工艺参数对AM50A镁合金 双控成形件组织和性能的影响

来源期刊:中国有色金属学报(英文版)2014年第2期

论文作者:姜巨福 王 迎 曲建俊

文章页码:321 - 333

关键词:AM50A镁合金;双控成形;力学性能;微观组织

Key words:AM50A magnesium alloy; double control forming; mechanical properties; microstructure

摘    要:利用四因素四水平正交实验研究工艺参数对双控成形AM50A镁合金构件的力学性能和微观组织的影响。双控成形的参数变化曲线表明,锻造过程是在压射过程完成35 ms后启动的。这表明双控成形过程既包含高速充填过程又具有高压密实过程。与压铸相比,双控成形构件既具有好的表面质量又具有高的力学性能。这主要是由于双控成形构件具有细小、均匀且具有很少(或者没有)铸造缺陷的微观组织所致。与浇注温度、模具温度和锻造压力相比,压铸速度对构件的屈服强度、抗拉强度和伸长率有更大的影响。但是与压射速度、模具温度和锻造压力相比,浇注温度对构件的硬度有更大的影响。除模具温度之外,675 °C的浇注温度、2.7 m/s的压射速度和4000 kN的锻造压力是获得最高的屈服强度、抗拉强度、伸长率和硬度的工艺参数。而要获得最高的屈服强度、抗拉强度、伸长率和硬度的模具温度匹配顺序为:205、195、195和 225 °C。在压铸件的拉伸断口表面能够发现明显的显微缩松和微裂纹。双控成形构件的拉伸断口表面存在大量的韧窝,没有铸造缺陷。这种韧窝形貌的断口对于提高构件的力学性能非常有利。

Abstract: Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 °C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 °C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号