利用振动频谱预测刀具磨损量
来源期刊:机械设计与制造2017年第10期
论文作者:库祥臣 郭跃飞 段明德 曹贝贝
文章页码:113 - 116
关键词:刀具磨损;振动;频谱;BP神经网络;
摘 要:采用振动传感器采集刀具车削时的信号,对振动信号进行短时傅里叶变换,将频谱集中区域(0~6250)Hz内的频率幅值直接输入到BP神经网络中进行训练,使神经网络建立振动信号频谱与刀具磨损量之间的映射关系,从而实现刀具磨损监测。人工提取的特征值一般数量较少,往往不能全面细致地刻画信号的特点,而该方法则充分发掘了神经网络强大的学习能力,具有方法简单、识别精度高、稳定性好的优点。实验结果表明,该方法可以快速准确地预测刀具磨损量。
库祥臣,郭跃飞,段明德,曹贝贝
河南科技大学机电工程学院
摘 要:采用振动传感器采集刀具车削时的信号,对振动信号进行短时傅里叶变换,将频谱集中区域(0~6250)Hz内的频率幅值直接输入到BP神经网络中进行训练,使神经网络建立振动信号频谱与刀具磨损量之间的映射关系,从而实现刀具磨损监测。人工提取的特征值一般数量较少,往往不能全面细致地刻画信号的特点,而该方法则充分发掘了神经网络强大的学习能力,具有方法简单、识别精度高、稳定性好的优点。实验结果表明,该方法可以快速准确地预测刀具磨损量。
关键词:刀具磨损;振动;频谱;BP神经网络;