简介概要

基于粒子群优化BP神经网络的巷道位移反分析

来源期刊:煤炭学报2012年第S1期

论文作者:王雪冬 李广杰 尤冰 秦胜伍 彭帅英

文章页码:38 - 42

关键词:巷道位移;物理力学参数;反分析法;PSO算法;BP神经网络;

摘    要:以某煤矿资料为基础,确定出岩体物理力学参数水平,并设计正交试验表。根据巷道边界条件建立几何模型,通过有限元法计算得出的位移值建立起PSO-BP神经网络学习样本,从而得到矿山巷道位移反分析预测岩体物理力学参数模型。研究结果表明:实测位移量与由预测参数计算位移量间的最大误差为3.27%,通过实测位移值反分析求得的岩体物理力学参数值可信,PSO-BP神经网络应用于矿山巷道位移反分析是可行的。

详情信息展示

基于粒子群优化BP神经网络的巷道位移反分析

王雪冬,李广杰,尤冰,秦胜伍,彭帅英

吉林大学建设工程学院

摘 要:以某煤矿资料为基础,确定出岩体物理力学参数水平,并设计正交试验表。根据巷道边界条件建立几何模型,通过有限元法计算得出的位移值建立起PSO-BP神经网络学习样本,从而得到矿山巷道位移反分析预测岩体物理力学参数模型。研究结果表明:实测位移量与由预测参数计算位移量间的最大误差为3.27%,通过实测位移值反分析求得的岩体物理力学参数值可信,PSO-BP神经网络应用于矿山巷道位移反分析是可行的。

关键词:巷道位移;物理力学参数;反分析法;PSO算法;BP神经网络;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号