烟花算法改进BP神经网络预测模型及其应用
来源期刊:控制工程2020年第8期
论文作者:马创涛 邵景峰
文章页码:1324 - 1331
关键词:预测方法;BP神经网络;烟花算法;参数优化;
摘 要:针对传统BP神经网络预测模型泛化能力弱且预测精度低的问题,首先对现有算法优化神经网络预测模型的不足进行了比较分析;然后,将烟花算法引入到神经网络模型中,利用烟花爆炸算子同时爆炸扩散的机理,对神经网络权重和阈值的寻优过程进行了优化,提出了一种基于烟花算法改进BP神经网络的预测模型。最后,以某纺织企业的棉纺质量数据为例,对提出的基于烟花算法改进BP神经网络的预测方法进行了应用验证。通过与其他算法改进BP神经网络的预测模型进行对比分析,结果表明:该预测方法对纱线质量的预测精度达到97.88%,而且该预测方法与其他方法相比,预测误差率下降了49.52%,并在寻优速度和寻优精度方面表现出较高性能。
马创涛,邵景峰
西安工程大学管理学院
摘 要:针对传统BP神经网络预测模型泛化能力弱且预测精度低的问题,首先对现有算法优化神经网络预测模型的不足进行了比较分析;然后,将烟花算法引入到神经网络模型中,利用烟花爆炸算子同时爆炸扩散的机理,对神经网络权重和阈值的寻优过程进行了优化,提出了一种基于烟花算法改进BP神经网络的预测模型。最后,以某纺织企业的棉纺质量数据为例,对提出的基于烟花算法改进BP神经网络的预测方法进行了应用验证。通过与其他算法改进BP神经网络的预测模型进行对比分析,结果表明:该预测方法对纱线质量的预测精度达到97.88%,而且该预测方法与其他方法相比,预测误差率下降了49.52%,并在寻优速度和寻优精度方面表现出较高性能。
关键词:预测方法;BP神经网络;烟花算法;参数优化;