正交判别的线性局部切空间排列结合SVM的门牌识别

来源期刊:中南大学学报(自然科学版)2011年第z1期

论文作者:马立玲 姬利军 王军政

文章页码:789 - 793

关键词:ODLLTSA算法;支持向量机;特征提取;门牌识别

Key words:ODLLTSA algorithm; support vector machine; feature extraction; door plate number recognition

摘    要:为了提高门牌识别的准确率,将正交判别的线性局部切空间排列算法(ODLLTSA)和支持向量机(SVM)方法相结合用于门牌字符的识别。该方法首先通过ODLLTSA算法提取门牌字符的特征向量,然后,使用提取的特征训练SVM分类器,再应用SVM分类器对新的字符进行分类。实验结果表明:这种方法具有良好的门牌识别效果、很高的识别率、较强的鲁棒性,有较大的应用价值。

Abstract: A new method is proposed, through combining the algorithm of orthogonal discriminant linear local tangent space alignment (ODLLTSA) and the support vector machine (SVM), to improve the accuracy of recognizing door plate numbers. The feature of door plate characters is first extracted by the ODLLTSA and then this extracted feature is used to train the SVM classifier. Finally, the new plate characters are classified by the trained SVM. Using the algorithm, a high recognition rate can be achieved. Experimental results show that this method is effective and robust in the real applications.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号