简介概要

特征选择算法在ECoG分类中的应用

来源期刊:东北大学学报(自然科学版)2011年第5期

论文作者:刘冲 李春胜 赵海滨 王宏

文章页码:658 - 661

关键词:皮层脑电;特征选择;频带能量;支持向量机;交叉验证;

摘    要:研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.

详情信息展示

特征选择算法在ECoG分类中的应用

刘冲1,2,李春胜2,赵海滨1,王宏1

1. 东北大学机械工程与自动化学院2. 东北大学中荷生物医学与信息工程学院

摘 要:研究了基于运动想象的皮层脑电信号ECoG的特点,针对BCI2005竞赛数据集I中的ECoG信号,通过提取频带能量获得了想象左手小指及舌头运动时的特征,结合Fisher,SVM-RFE及L0算法对特征进行选择,采用10段交叉验证的方法得到训练数据集在各维特征数下的识别正确率并选出最佳特征组合.结果表明:三种特征选择方法中SVM-RFE算法所选出的特征组合可以获得最低的识别错误率以及最低的特征维数,针对所选出的特征组合,使用训练数据集的特征对线性支持向量机进行训练,使用训练好的模型对测试数据集进行分类,识别正确率可以达到94%.

关键词:皮层脑电;特征选择;频带能量;支持向量机;交叉验证;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号