PAPR reduction in mobile WiMAX:A new ZCMT precoded random interleaved OFDMA system

来源期刊:中南大学学报(英文版)2012年第4期

论文作者:I. Baig V. Jeoti

文章页码:988 - 993

Key words:peak to average power ratio; orthogonal frequency division multiple access; zadoff-chu matrix transform; mobile WiMAX; root-raised-cosine pulse shaping

Abstract:

Mobile WiMAX (worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access (OFDMA) as multiple access technique for its uplink (UL) and downlink (DL) to improve the multipath performance. All OFDMA based networks, like mobile WiMAX, experience the problem of high peak-to-average power ratio (PAPR). The high PAPR increases the complexity of analog-to-digital (A/D) and digital-to-analog (D/A) convertors, and also reduces the efficiency of RF high-power-amplifier (HPA). In this work, a new zadoff-chu matrix transform (ZCMT) precoding based random interleaved orthogonal frequency division multiple access (OFDMA) system was proposed for PAPR reduction in mobile WiMAX system. The system is based on precoding the constellation symbols with the ZCMT precoder before subcarrier mapping. The PAPR of proposed system is analyzed with the root-raised-cosine (RRC) pulse shaping to keep out of band radiation low and meet the transmission spectrum mask requirement. Simulation results show that the proposed system has better PAPR gain than the hadamard transform (WHT) precoded random interleaved OFDMA systems and the conventional random interleaved OFDMA systems. Symbol-error- rate (SER) performance of the system is also better than the conventional random interleaved OFDMA systems and the random interleaved OFDMA systems with WHT. The good improvement in PAPR significantly reduces the cost and the complexity of the transmitter.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号