简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Passivation process of X80 pipeline steel in bicarbonate solutions

Jian-long Zhou1), Xiao-gang Li1), Cui-wei Du1), Ying Pan2), Tao Li 3), and Qian Liu1) 1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2) Wuhan Research Institute of Materials Protection, Wuhan 430030, China 3) School of Materials & Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China

摘 要:The passivation process of X80 pipeline steel in bicarbonate solutions was investigated using potentiodynamic, dynamic electro-chemical impedance spectroscopy (DEIS), and Mott-Schottky measurements. The results show that the shape of polarization curves changes with concentration. The critical ‘passive’ concentration is 0.009 mol/L for X80 pipeline steel in bicarbonate solutions. No anodic current peak exists in solutions when the concentration is lower than 0.009 mol/L, whereas there are one and two anodic current peaks when the concentration ranges from 0.009 to 0.05 mol/L and is higher than 0.1 mol/L, respectively. DEIS measurements show that there exist active dissolution range, transition range, pre-passive range, passive layer formation range, passive range, and trans-passive range for X80 pipeline steel in the 0.1 mol/L solutions. The results of DEIS measurements are in complete agreement with the potentiodynamic diagram. An equivalent circuit containing three sub-layers is used to explain the Nyquist plots in the passive range. Analyses are well made for explaining the corresponding fitted capacitance and impedance. The Mott-Schottky plots show that the passive film of X80 pipeline steel is an n-type semiconductor, and capacitance measurements are in good accordance with the results of DEIS experiment.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号