基于神经网络的沉陷区水深遥感研究
来源期刊:煤田地质与勘探2007年第2期
论文作者:彭苏萍 武彦斌 邹冠贵 黄明
关键词:沉陷区; 水深; 遥感; 人工神经网络;
摘 要:为获取煤矿积水沉陷区遥感影像数据与沉陷区水深的定量关系,建立了BP神经网络水深反演模型,并对淮南潘一矿积水沉陷区水深进行了反演.首先对Landsat卫星影像数据(TM影像)进行几何校正、大气校正和沉陷区范围提取等,然后输出像元反射率值,并与水深实测控制点坐标匹配,使水深值与反射率值对应.实验结果表明:以水深值2 m为阈值,水深值小于2 m的区域,模型反演水深值与实测水深值的平均绝对误差为0.166 3 m,平均相对误差为13.29%;水深值为2~6 m的区域,模型反演水深值与实测水深值平均绝对误差为0.578 6 m,平均相对误差为15.20%.
彭苏萍1,武彦斌1,邹冠贵1,黄明1
(1.中国矿业大学煤炭资源与安全开采国家重点实验室,北京,100083)
摘要:为获取煤矿积水沉陷区遥感影像数据与沉陷区水深的定量关系,建立了BP神经网络水深反演模型,并对淮南潘一矿积水沉陷区水深进行了反演.首先对Landsat卫星影像数据(TM影像)进行几何校正、大气校正和沉陷区范围提取等,然后输出像元反射率值,并与水深实测控制点坐标匹配,使水深值与反射率值对应.实验结果表明:以水深值2 m为阈值,水深值小于2 m的区域,模型反演水深值与实测水深值的平均绝对误差为0.166 3 m,平均相对误差为13.29%;水深值为2~6 m的区域,模型反演水深值与实测水深值平均绝对误差为0.578 6 m,平均相对误差为15.20%.
关键词:沉陷区; 水深; 遥感; 人工神经网络;
【全文内容正在添加中】