具周期裂缝的无限弹性平面问题
来源期刊:中南大学学报(自然科学版)1980年第2期
论文作者:路见可
文章页码:9 - 19
关键词:周期裂缝; 弹性平面问题; 静力平衡; 主矢量; 奇异积分方程; 周期带; 待定常数; 无穷远; 外应力
摘 要:在本文中,考虑了具任意个数,任意形状的周期裂缝的无限弹性平面静力平衡的第一和第二基本问题。我们假定了应力是周期的且有界,这就等于说位移是准周期的。运用保形映射的方法,我们把这种问题化为了某种类型的奇异积分方程,并证明了所求解的存在和唯一。
Abstract: In this paper,the first and the second fundamental static problems ofan infinite elastic plane with an arbitrary number of periodic cracks ofarbitrary shape are discussed.We assume the stresses to be periodic andbounded,or that is the same,the displacements are quasi-periodic.Byusing the method of conformal mapping,we reduce such problems to singularintegral equations of certain kind.We then show that the solution requiredin each case exists and is unique.