简介概要

Challenges to Introduce Advanced Cooling Technology by the Utilization of Plural Cooling Velocity

来源期刊:材料热处理学报2004年第5期

论文作者:Kiyoshi Funatani

关键词:Distortion; hardness; cooling curve; heat transfer coefficient; vapor blanket stage; computer simulation;

摘    要:The control of cooling power is very important to introduce desired properties. Usually, higher the cooling rate higher the quench hardness and distortion and the optimization of cooling power is the base for good heat treatment. The change of cooling speed during quenching is one of the effective methods to balance hardness and distortion. Different form the general knowledge of the demerit of vapor blanket stage, oil with long vapor blanket stage is also one of effective methods to reduce distortion. The reduction of distortion with enough quench hardness seems to be possible by optimization of cooling condition by the help of computer simulation. The exhibition of higher core hardness than surface in through hardening steels experienced in the "Inverse quench hardening" was introduced by Prof. Tamura and Shimizu. This mechanism is well explained by Arimoto et al, by analysis of computer simulation. In this paper, plural steps cooling methods are compared, in relation with cooling curve and heat transfer coefficient that is necessary to simulate quench results and the possibility of advanced cooling technology is discussed.

详情信息展示

Challenges to Introduce Advanced Cooling Technology by the Utilization of Plural Cooling Velocity

Kiyoshi Funatani1

(1.IMST Inst, Nagoya JAPAN)

摘要:The control of cooling power is very important to introduce desired properties. Usually, higher the cooling rate higher the quench hardness and distortion and the optimization of cooling power is the base for good heat treatment. The change of cooling speed during quenching is one of the effective methods to balance hardness and distortion. Different form the general knowledge of the demerit of vapor blanket stage, oil with long vapor blanket stage is also one of effective methods to reduce distortion. The reduction of distortion with enough quench hardness seems to be possible by optimization of cooling condition by the help of computer simulation. The exhibition of higher core hardness than surface in through hardening steels experienced in the "Inverse quench hardening" was introduced by Prof. Tamura and Shimizu. This mechanism is well explained by Arimoto et al, by analysis of computer simulation. In this paper, plural steps cooling methods are compared, in relation with cooling curve and heat transfer coefficient that is necessary to simulate quench results and the possibility of advanced cooling technology is discussed.

关键词:Distortion; hardness; cooling curve; heat transfer coefficient; vapor blanket stage; computer simulation;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号