网络首发时间: 2016-12-09 14:41

稀有金属2017年第10期

镀锡银钎料钎焊316LN不锈钢的接头组织及力学性能

王星星 彭进 崔大田 唐明奇 龙伟民

华北水利水电大学机械学院

哈尔滨工业大学先进焊接与连接国家重点实验室

郑州机械研究所新型钎焊材料与技术国家重点实验室

摘 要:

通过在BAg34CuZnSn钎料 (3.5%Sn, 质量分数) 基材表面刷镀微米锡层, 采用感应钎焊方法对316LN不锈钢进行连接。利用扫描电镜 (SEM) 和X射线衍射仪 (XRD) 分析基材表面锡镀层的结晶取向和界面形貌, 以及316LN不锈钢钎焊接头的显微组织、物相组成、断口形貌, 并借助万能拉力试验机测试了钎焊接头的力学性能。结果表明, 基材表面锡镀层结晶晶粒呈现明显的 (200) , (112) 择优取向。BAg34CuZnSn基材钎料和5.0%Sn含量镀锡银钎料连接的316LN不锈钢钎焊接头组织主要由Ag相、富Cu相、CuZn相、Cu5Zn8相组成;当镀锡银钎料中Sn含量为6.4%时, 316LN不锈钢钎焊接头组织主要由Ag相、富Cu相、CuZn相、Cu5Zn8相、Cu41Sn11相和Ag3Sn相组成。镀锡后316LN不锈钢钎焊接头的抗拉强度高于基材钎料连接的接头强度, 且随着镀锡银钎料中Sn含量逐渐升高, 316LN不锈钢钎焊接头的抗拉强度呈现先升高后降低的趋势。在镀锡银钎料中Sn含量为5.5%时, 钎焊接头的抗拉强度最高, 为415 MPa。镀锡不改变316LN不锈钢钎焊接头的断口特征, 镀锡前后316LN不锈钢钎焊接头的拉伸断口均呈现以韧性断裂为主脆性断裂为辅的混合断裂特征。

关键词:

镀锡银钎料;不锈钢钎焊接头;微观组织;抗拉强度;断口特征;

中图分类号: TG457.11

作者简介:王星星 (1984-) , 男, 陕西宝鸡人, 博士, 讲师, 研究方向:新型钎焊材料及其钎焊工艺开发, E-mail:paperwxx@126.com;;唐明奇, 副教授, 电话:0371-69127295, E-mail:tangmq1980@126.com;

收稿日期:2016-08-19

基金:国家自然科学基金项目 (51705151);河南省自然科学基金项目 (162300410191);河南省高等学校重点科研项目 (17A430021) 资助;

Microstructure and Mechanical Properties of 316LN Stainless Steel Brazed Joints Based on Silver Brazing Filler Metals with Plating Tin

Wang Xingxing Peng Jin Cui Datian Tang Mingqi Long Weimin

School of Mechanical Engineering, North China University of Water Resources and Electric Power

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology

State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering

Abstract:

316LN stainless steels were induction brazed successfully using BAg34CuZnSn ( 3. 5% Sn content, mass fraction) brazing alloys with tin brush-plated coatings. Scanning electron microscope ( SEM) and X-ray diffraction ( XRD) were used to analyze the interface morphology and crystalline orientation of tin coating on the surface of base brazing alloys and observe the microstructure, phase composition and fracture morphology of 316 LN stainless steel brazed joints. The tensile strength of brazed joints was analyzed using tensile test machine. The results showed that the crystallization orientation of tin coating displayed ( 200) and ( 112) crystal faces. The microstructure of 316 LN stainless steel brazed joints using BAg34CuZnSn base brazing alloys and 5. 0% ( mass fraction) silver brazing alloys with plating tin was composed of Ag phase, Cu-rich phase, CuZn compound phase and Cu5Zn8 compound phase. The structure of316 LN stainless steels brazed joints was composed of Ag phase, Cu-rich phase, CuZn compound phase, Cu5Zn8 compound phase, Cu41Sn11 compound phase and Ag3Sn compound phase when tin content of silver brazing alloys was 6. 4% ( mass fraction) . The tensile strength of substrate brazing alloys was lower than silver brazing filler metals with plating tin. The tensile strength of brazed joints initially increased and then decreased with the increase of plating tin content. When silver brazing alloys contained 5. 5% ( mass fraction) tin, the maximum tensile strength of 316 LN stainless steels brazed joints was 415 MPa. Fracture characteristic of 316 LN stainless steel was not changed with the introduction of brush plating tin. The fracture morphology of 316 LN stainless steels brazed joints using silver brazing filler metals with plating tin mainly displayed ductile fracture which was the same as the brazed joints using the BAg34CuZnSn substrate brazing filler metals.

Keyword:

silver brazing alloys with plating tin; stainless steel brazed joints; microstructure; tensile strength; fracture feature;

Received: 2016-08-19

不锈钢钎焊广泛用于航空航天、核能装置、仪器仪表、电子通信等工业领域, 如蜂窝结构、热交换器、套管构件等。银钎料由于熔化温度和钎焊温度低, 对母材性能影响小, 是钎焊不锈钢最常用的硬钎料[1,2,3]。特别是无镉银钎料, 一直是国内外钎焊学术界和产业界关注的热点课题, 目前已研究分析添加Sn, Ni, In, Ga, Ce等有益元素[4,5,6,7]及C, Ca, O, S杂质元素[2,8,9,10]对Ag Cu Zn系钎料组织和性能的影响, 为加工制造绿色、洁净银钎料提供了理论依据。

对于无镉Ag Cu Zn Sn钎料, 国内外学者进行了广泛而深入的研究。Wierzbicki等[11]成功研制9种新型Ag Cu Zn Sn钎料, 该钎料在紫铜、黄铜及纯镍表面具有良好的润湿性, 但连接强度较低。Li等[12]将Ag Cu Zn Sn钎料用于Ti Ni形状记忆合金与不锈钢的连接, 发现接头组织主要由Ag相、Cu相和Ag Cu共晶相及少量化合物组成。传统熔炼合金化方法生产的Ag Cu Zn Sn钎料中Sn含量一般不高于5.5%, 否则其塑性降低、容易发脆。在不影响钎料加工性能前提下, 通过镀覆方法提高Ag Cu Zn系钎料中Sn含量, 可改善钎料的熔点、润湿等性能, 王星星等人已开展了相关研究并给出最佳镀覆扩散工艺[13,14,15]。但是, 开展镀锡银钎料钎焊不锈钢接头组织性能的研究, 目前国内外学术界还少见相关报道。

在前期研究工作基础上, 本文主要分析镀锡银钎料钎焊316LN不锈钢的接头显微组织和力学性能, 希望为相关领域的理论研究和工程应用提供技术支撑和科学依据。

1 实验

1.1 方法

基材为BAg34Cu Zn Sn钎料 (尺寸60.00 mm×30.00 mm×0.30 mm) , 其成分为:33.52%Ag, 35.97%Cu, 27.03%Zn, 3.48%Sn;镀锡后钎料成分: (1) 5.0%Sn含量:32.73%Ag, 35.68%Cu, 26.60%Zn, 4.99%Sn; (2) 5.5%Sn含量:32.56%Ag, 35.55%Cu, 26.38%Zn, 5.51%Sn; (3) 6.4%Sn含量:32.24%Ag, 35.29%Cu, 26.04%Zn, 6.43%Sn。母材为316LN不锈钢 (尺寸60.0 mm×25.0 mm×2.0mm) , 所用钎剂为FB102。

具体刷镀工艺流程、工艺参数及仪器型号见课题组前期报道文献[13], 单面镀层厚度为5~15μm。镀锡工艺结束后, 采用温度梯度法对带锡电镀层的银钎料进行热扩散处理, 具体步骤如下: (1) 将钎料置于DZF-6090真空干燥箱中在240~250℃进行快速渗透 (退火) , 时间1~5 min; (2) 快速渗透完毕后, 在180~220℃条件下0.5 MPa氮气保护的管式炉中对其扩散8~30 h; (3) 随炉冷却。

连接方法:采用感应钎焊工艺进行对接试验, 钎缝间隙0.06~0.08 mm, 钎焊温度 (770±5) ℃, 钎焊时间50 s。

1.2 测试分析

接头试样经镶嵌、打磨、抛光、腐蚀 (浓度3%~4%Fe Cl3溶液) 后, 采用MIRA3TESCAN场发射扫描电镜 (SEM) 及D8 FOCUS型X射线衍射仪 (XRD) 观察分析钎料表面锡镀层的结晶取向、界面形貌与钎焊接头的显微组织、断口形貌及物相组成。根据国标GB/T 11363-2008《钎焊接头强度试验方法》, 利用MTS电子万能拉力试验机进行接头拉伸试验, 每种接头均测试7组, 去掉最大、最小值, 然后取其均值, 具体试样尺寸, 如图1所示。

2 结果与讨论

2.1 钎料表面镀层分析

BAg34Cu Zn Sn钎料表面锡刷镀层的XRD谱图、界面形貌, 如图2所示。由图2 (a) 可知, 银钎料表面锡刷镀层的结晶晶粒呈现明显的 (200) , (112) 择优取向。由图2 (b) 可知, 钎料与锡镀层结合界面平整、致密, 镀层组织均匀, 无气孔、夹杂等缺陷。说明钎料表面镀锡, 降低锡镀层与基体钎料的内应力, 提高锡镀层与Ag Cu Zn Sn钎料的结合度, 使得基体钎料与锡镀层结合致密、无缺欠出现。

2.2 钎焊接头显微组织

316LN不锈钢感应钎焊接头的显微组织和XRD谱图, 如图3, 4所示。根据Ag-Sn, Cu-Sn, Cu-Zn, Ag-Cu-Zn及Ag-Cu-Sn合金相图和图4中XRD谱图分析结果, 可判定钎焊接头组织的组成相。3.5%Sn含量基体钎料和5.0%Sn含量镀锡银钎料连接的接头组织主要由富Cu相、Ag相、Cu Zn相、Cu5Zn8相组成。当镀锡银钎料中Sn含量为6.4%时, 接头组织中Ag相和富Cu相减少, 共晶组织含量升高, 接头组织主要由富Cu相、Ag相、Cu Zn相、Cu5Zn8相、Ag3Sn相和Cu41Sn11相组成。3.5%Sn含量基体钎料内可能存在少量Cu Sn化合物, 当凝固温度降至758℃时, 液相可与初始α-Cu (其内固溶了一定的Sn) 发生包晶反应, 生成β相。当钎料中Sn含量较低时, 锡青铜相分布较为均匀, 所以银基固溶体相以分散的颗粒状分布。

图1 拉伸试样示意图Fig.1 Schematic program of tensile specimen (mm)

图2 锡镀层分析Fig.2 Analysis of tin coating

(a) XRD result; (b) Interface morphology

镀锡银钎料钎焊不锈钢接头的组织演变机制:由图3 (b) , (c) 可知, 随着钎料中Sn含量升高, 钎料中银基固溶体分布发生了变化, 即镀锡银钎料中的Sn含量与Ag固溶体相的分布行为密切相关。由于金属Sn熔点低, 当提高镀锡银钎料中的Sn含量时, 可降低钎料熔化温度, 使得不锈钢母材钎焊中所使用的焊接温度降低, 钎焊工艺结束后发生较快的冷却, 在钎料凝固过程中, 由于锡在钎料中含量较低, 随着钎焊温度降低不存在富余的锡向外排出, 而冷却过程中银相被排挤至边缘, 与铜相发生共晶反应[3], 但共晶组织中的铜基固溶体依附于先析出的富Cu相上, 因此在锡青铜组织周围存在以离异共晶形式析出的银基固溶体。随着镀锡银钎料中Sn含量升高, 尤其是Sn含量超过5.5%后, 锡青铜相的偏聚非常严重, 银基固溶体相将聚集分布在锡青铜组织周围[11], 致使接头组织中富Cu相和Cu Zn化合物相的量减少, 对钎焊接头强度产生显著影响。

图3 钎焊接头的显微组织Fig.3 Microstructure of brazed joint

(a) 3.5%Sn; (b) 5.0%Sn; (c) 6.4%Sn

图4 钎焊接头的XRD谱Fig.4 XRD patterns of brazed joints

(a) 3.5%Sn; (b) 5.0%Sn; (c) 6.4%Sn

2.3 钎焊接头的力学性能

Sn含量对316LN不锈钢钎焊接头抗拉强度的影响, 如图5所示。随着钎料中Sn含量升高, 钎焊接头的抗拉强度呈现先升高后下降趋势。镀覆锡后, 316LN不锈钢钎焊接头的抗拉强度整体高于3.5%Sn含量基体钎料连接的接头强度 (365 MPa) 。当镀锡银钎料中Sn含量为5.5%时, 钎焊接头的抗拉强度最高, 为415 MPa。

Sn元素影响316LN不锈钢钎焊接头抗拉强度的原因在于: (1) 随着镀覆Sn含量升高, 钎料中Sn含量增加, 使得钎料熔化温度逐渐降低, 即钎焊温度逐渐降低。因此, 钎焊工艺结束后钎料快速冷却使得接头产生残余应力, 增强接头的连接强度。 (2) 元素Sn与基体钎料具有一定的固溶度, 能够在3.5%Sn含量基体钎料中形成固溶体。由于元素Sn的原子半径较大, 故锡在钎料中只能形成置换固溶体, 而置换固溶体中由于溶质原子与溶剂原子之间存在尺寸差异, 随着镀覆Sn元素的引入将引起点阵畸变。这种畸变可形成cottrell气团[4], 而cottrell气团具有钉扎位错和阻碍位错滑移的作用, 从而增强接头强度。 (3) 镀覆的Sn元素通过扩散在钎缝一侧形成固溶体层, 但随着镀覆Sn含量升高, 钎缝中出现脆性化合物, 导致钎焊接头强度下降。综合上述分析可知, 当钎焊接头中元素Sn含量较低时, 前两个因素占主导地位, 因此当Sn含量低于5.5%时, 钎焊接头的抗拉强度升高;当钎料中Sn含量超过5.5%后, 脆性化合物的出现影响钎料的流动性, 成为钎焊接头内部缺欠的主要来源, 导致不锈钢钎焊接头的抗拉强度降低。

图5 Sn含量对钎焊接头抗拉强度的影响Fig.5 Effect of tin content on tensile strength of brazed joints

不同条件下316LN不锈钢钎焊接头的断口形貌, 如图6所示。

分析可知, 3.5%Sn含量基体钎料和5.0%Sn含量 (低于5.5%) 镀锡银钎料接头断口呈现纤维状, 韧窝整体大小不同且局部存在少量脆性相, 故断口呈现以韧性断裂为主脆性断裂为辅的混合断裂, 见图6 (a) 和 (b) 。当镀锡银钎料中Sn含量为6.4% (超过5.5%) 时, 钎焊接头断口中韧窝减少, 但断口形貌仍呈现以韧性断裂为主脆性断裂为辅的混合断裂特征, 见图6 (c) 。进一步分析可知, 影响316LN不锈钢钎焊接头断口特征的主要原因如下: (1) 韧窝。由于大量的强化相存在于钎缝组织中, 当这些强化相在拉伸过程中被拉出时, 接头断口将出现许多大小不一的微小韧窝。 (2) 亚稳态相。从其断口形貌可知, 韧窝周围的Cu Sn脆性相[12]在拉伸过程中直接被拉断。当镀锡钎料中Sn含量低于5.5%时, 钎焊接头的抗拉强度逐渐升高;当镀锡钎料中Sn含量超过5.5%后, 接头组织中Cu Sn脆性相比例逐渐增大, 使得接头抗拉强度开始降低。 (3) 母材影响。当钎焊温度升高时, 316LN不锈钢中的元素Fe和Cr在液态钎料中的溶解度增大[5], 使得固溶强化作用增强, 提高钎焊接头的抗拉强度。 (4) 晶界强度。不锈钢钎焊接头的强度主要决定于晶界强度。高温环境中, 位错的移动几乎完全依靠原子的扩散作用, 同时接头钎缝区域的原子扩散运动加快, 使得晶界强度快速下降, 钎焊接头强度随之降低。

图6 钎焊接头的断口形貌Fig.6 Tensile fracture morphology of brazed joints (a) 3.5%Sn; (b) 5.0%Sn; (c) 6.4%Sn

3 结论

1.随着镀锡银钎料中Sn含量升高, 316LN不锈钢钎焊接头的抗拉强度先升高后降低。在钎料中Sn含量为5.5%时, 钎焊接头的抗拉强度最高, 为415 MPa。

2.采用BAg34Cu Zn Sn基材钎料和5.0%Sn含量镀锡银钎料连接的316LN不锈钢钎焊接头组织主要由Ag相、富Cu相、Cu Zn相、Cu5Zn8相组成;当镀锡银钎料中Sn含量为6.4%时, 316LN不锈钢钎焊接头组织主要由Ag相、富Cu相、Cu Zn相、Cu5Zn8相、Cu41Sn11相和Ag3Sn相组成。

3.镀锡不改变316LN不锈钢感应钎焊接头的断裂方式。即采用基体钎料和5.0%Sn, 6.4%Sn含量的镀锡银钎料连接的316LN不锈钢接头断口均呈现以韧性断裂为主脆性断裂为辅的混合断裂特征。

参考文献

[1] Long W M, Zhang G X, Zhang Q K.In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J].Scripta Materialia, 2016, 110:41.

[2] Zhang G X, Long W M, He P, Cui Y Y, She C.Brazing properties of silver based filler metal with different carbon contents[J].Chinese Journal of Rare Metals, 2015, 39 (6) :527. (张冠星, 龙伟民, 何鹏, 崔艳艳, 佘春.不同碳含量对银钎料钎焊性能的影响[J].稀有金属, 2015, 39 (6) :527.)

[3] Watanabe T, Yanagisawa A, Sasaki T.Development of Ag based brazing filler metal with low melting point[J].Science and Technology of Welding and Joining, 2011, 16 (6) :502.

[4] Cao J, Zhang L X, Wang H Q, Wu L Z, Feng J C.Effect of silver content on microstructure and properties of brass/steel induction brazing joint using Ag-Cu-Zn-Sn filler metal[J].Journal of Materials Science&Technology, 2011, 27 (4) :377.

[5] Winiowski A, Rózanski M.Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J].Archives of Metallurgy and Materials, 2013, 58 (4) :1007.

[6] Lai Z M, Xue S B, Han X P, Gu L Y, Gu W H.Study on microstructure and property of brazed joint of Ag Cu Zn-X (Ga, Sn, In, Ni) brazing alloy[J].Rare Metal Materials and Engineering, 2010, 39 (3) :397.

[7] Ma J, Long W M, He P, Bao L, Xue P, Wu M F.Effect of gallium addition on microstructure and properties of Ag-Cu-Zn-Sn alloys[J].China Welding (English Edition) , 2015, 24 (3) :6.

[8] Sui F F, Long W M, Liu S X, Zhang G X, Bao L, Li H, Chen Y.Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag-Cu-Zn brazing filler metal[J].Materials&Design, 2013, 46:605.

[9] Zhang G X, Long W M, Pan J J, Li H.Effect of oxygen content on wettability and mechanical property of brazing seam for silver based powdered brazing filler metal[J].Transactions of the China Welding Institution, 2014, 35 (3) :81. (张冠星, 龙伟民, 潘建军, 李浩.氧含量对银基粉状钎料润湿性及钎缝力学性能的影响[J].焊接学报, 2014, 35 (3) :81.)

[10] Chen Y, Yun D, Sui F, Long W, Zhang G, Liu S.Influence of sulphur on the microstructure and propertiesof Ag-Cu-Zn brazing filler metal[J].Materials Science and Technology (United Kingdom) , 2013, 29 (10) :1267.

[11] Wierzbicki L J, Malec W, Stobrawa J, Cwolek B, Juszczyk B.Studies into new, environmentally friendly AgCu-Zn-Sn brazing alloys of low silver content[J].Archives of Metallurgy and Materials, 2011, 56 (1) :147.

[12] Li M G, Sun D Q, Qiu X M, Yin S Q.Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J].Materials Science and Technology, 2005, 21 (11) :1318.

[13] Wang X X, Du Q B, Long W M, LüD F.Effect of micro tin brush-electroplated coating on properties of Ag Cu Zn Sn brazing filler metals[J].Transactions of the China Welding Institution, 2015, 36 (3) :47. (王星星, 杜全斌, 龙伟民, 吕登峰.微米锡刷镀层对Ag Cu Zn Sn钎料性能的影响[J].焊接学报, 2015, 36 (3) :47.)

[14] Wang X X, Long W M, Ma J, LüD F.Effect of electroplated tin coating on properties of BAg50Cu Zn brazing filler metal[J].Transactions of the China Welding Institution, 2014, 35 (9) :61. (王星星, 龙伟民, 马佳, 吕登峰.锡镀层对BAg50Cu Zn钎料性能的影响[J].焊接学报, 2014, 35 (9) :61.)

[15] Wang X X, Li Q C, Long W M, Nie K B, Tang M Q.Effect of heat diffusion process on the interface microstructure and melting characteristic of brazing filler metals with tin coatings[J].Transactions of the China Welding Institution, 2016, 37 (5) :89. (王星星, 李权才, 龙伟民, 聂凯波, 唐明奇.热扩散对镀锡银钎料界面组织及熔化特性的影响[J].焊接学报, 2016, 37 (5) :89.)

[1] Long W M, Zhang G X, Zhang Q K.In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J].Scripta Materialia, 2016, 110:41.

[2] Zhang G X, Long W M, He P, Cui Y Y, She C.Brazing properties of silver based filler metal with different carbon contents[J].Chinese Journal of Rare Metals, 2015, 39 (6) :527. (张冠星, 龙伟民, 何鹏, 崔艳艳, 佘春.不同碳含量对银钎料钎焊性能的影响[J].稀有金属, 2015, 39 (6) :527.)

[3] Watanabe T, Yanagisawa A, Sasaki T.Development of Ag based brazing filler metal with low melting point[J].Science and Technology of Welding and Joining, 2011, 16 (6) :502.

[4] Cao J, Zhang L X, Wang H Q, Wu L Z, Feng J C.Effect of silver content on microstructure and properties of brass/steel induction brazing joint using Ag-Cu-Zn-Sn filler metal[J].Journal of Materials Science&Technology, 2011, 27 (4) :377.

[5] Winiowski A, Rózanski M.Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J].Archives of Metallurgy and Materials, 2013, 58 (4) :1007.

[6] Lai Z M, Xue S B, Han X P, Gu L Y, Gu W H.Study on microstructure and property of brazed joint of Ag Cu Zn-X (Ga, Sn, In, Ni) brazing alloy[J].Rare Metal Materials and Engineering, 2010, 39 (3) :397.

[7] Ma J, Long W M, He P, Bao L, Xue P, Wu M F.Effect of gallium addition on microstructure and properties of Ag-Cu-Zn-Sn alloys[J].China Welding (English Edition) , 2015, 24 (3) :6.

[8] Sui F F, Long W M, Liu S X, Zhang G X, Bao L, Li H, Chen Y.Effect of calcium on the microstructure and mechanical properties of brazed joint using Ag-Cu-Zn brazing filler metal[J].Materials&Design, 2013, 46:605.

[9] Zhang G X, Long W M, Pan J J, Li H.Effect of oxygen content on wettability and mechanical property of brazing seam for silver based powdered brazing filler metal[J].Transactions of the China Welding Institution, 2014, 35 (3) :81. (张冠星, 龙伟民, 潘建军, 李浩.氧含量对银基粉状钎料润湿性及钎缝力学性能的影响[J].焊接学报, 2014, 35 (3) :81.)

[10] Chen Y, Yun D, Sui F, Long W, Zhang G, Liu S.Influence of sulphur on the microstructure and propertiesof Ag-Cu-Zn brazing filler metal[J].Materials Science and Technology (United Kingdom) , 2013, 29 (10) :1267.

[11] Wierzbicki L J, Malec W, Stobrawa J, Cwolek B, Juszczyk B.Studies into new, environmentally friendly AgCu-Zn-Sn brazing alloys of low silver content[J].Archives of Metallurgy and Materials, 2011, 56 (1) :147.

[12] Li M G, Sun D Q, Qiu X M, Yin S Q.Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J].Materials Science and Technology, 2005, 21 (11) :1318.

[13] Wang X X, Du Q B, Long W M, LüD F.Effect of micro tin brush-electroplated coating on properties of Ag Cu Zn Sn brazing filler metals[J].Transactions of the China Welding Institution, 2015, 36 (3) :47. (王星星, 杜全斌, 龙伟民, 吕登峰.微米锡刷镀层对Ag Cu Zn Sn钎料性能的影响[J].焊接学报, 2015, 36 (3) :47.)

[14] Wang X X, Long W M, Ma J, LüD F.Effect of electroplated tin coating on properties of BAg50Cu Zn brazing filler metal[J].Transactions of the China Welding Institution, 2014, 35 (9) :61. (王星星, 龙伟民, 马佳, 吕登峰.锡镀层对BAg50Cu Zn钎料性能的影响[J].焊接学报, 2014, 35 (9) :61.)

[15] Wang X X, Li Q C, Long W M, Nie K B, Tang M Q.Effect of heat diffusion process on the interface microstructure and melting characteristic of brazing filler metals with tin coatings[J].Transactions of the China Welding Institution, 2016, 37 (5) :89. (王星星, 李权才, 龙伟民, 聂凯波, 唐明奇.热扩散对镀锡银钎料界面组织及熔化特性的影响[J].焊接学报, 2016, 37 (5) :89.)