ÖйúÓÐÉ«½ðÊôѧ±¨

DOI£º10.19476/j.ysxb.1004.0609.2019.03.13

Au-Pt-SnÈýÔªºÏ½ðÏàͼµÄ700 ¡æµÈνØÃæ

ºú½àÇí1, 2£¬Ð»  Ã÷1, 2£¬³Â  ËÉ1, 2£¬³ÂÓÀÌ©1, 2£¬Íõ  ËÉ2£¬ÍõÈû±±1, 2

(1. À¥Ã÷Àí¹¤´óѧ ²ÄÁÏ¿ÆѧÓ빤³ÌѧԺ£¬À¥Ã÷ 650093£»

2. À¥Ã÷¹ó½ðÊôÑо¿Ëù£¬À¥Ã÷ 650106)

Õª Òª£º

²ÉÓà X ÉäÏßÑÜÉäÒÇ(XRD)ºÍµç×Ó̽ÕëÏÔ΢·ÖÎöÒÇ(EPMA)µÈ·½·¨²â¶¨ÁËAu-Pt-Sn ÈýԪϵ 700 ¡æµÈνØÃæ¡£½á¹û±íÃ÷£ºAu-Pt-Sn Ìåϵ 700 ¡æµÈνØÃæÓÉ3¸öµ¥ÏàÇø¡¢7¸öÁ½ÏàÇøºÍ6¸öÈýÏàÇø×é³É¡£6¸öÈýÏàÇø·Ö±ðΪPt3Sn+FCC-A1+PtSn¡¢PtSn+FCC-A1+Au5Sn¡¢PtSn+Pt3Sn+Au5Sn¡¢Pt3Sn+FCC-A1+Au5Sn¡¢PtSn+Pt2Sn3+LiquidºÍPtSn+FCC-A1+Liquid¡£Au-Pt-SnÌåϵÖдæÔÚAu-PtºÏ½ðµÄµ÷·ù·Ö½â·´Ó¦£¬Ëæ×ÅPtº¬Á¿µÄ¼õÉÙ£¬ºÏ½ðÖе÷·ù·Ö½âÏàÖð½¥Ïûʧ£¬ÔÚAu16Pt30Sn54ºÍAu16Pt20Sn64ºÏ½ðÖÐÍêÈ«Ïûʧ¡£ÓÉÓÚPt-SnºÏ½ðÏàµÄÈÛµã½ÏAu-SnºÏ½ðµÄÏà¸ß£¬ËùÒÔÔÚ700 ¡æµÈνØÃ棬´ó¶¼Ö»´æÔÚPt-SnºÏ½ðÏ࣬¶øAu-SnºÏ½ðÏà´ó¶¼Ö»´æÔÚÓÚÒºÏàÖС£ºÏ½ðAu16Pt69Sn15¡¢Au16Pt54Sn30ºÍAu16Pt42Sn42ÓÉÓÚ´æÔÚµ÷·ù·Ö½âÏ࣬×éÖ¯·Ö²¼½Ï¾ùÔÈ£¬ÆäÇ¿¶ÈÃ÷ÏԱȺϽðAu16Pt30Sn54ºÍAu16Pt20Sn64µÄ¸ß¡£

¹Ø¼ü´Ê£º

Au-Pt-Sn Ìåϵ£»Ïàͼ£»µÈνØÃ棻ÏÔ΢×éÖ¯£»Ïàƽºâ£»µ÷·ù·Ö½â£»

ÎÄÕ±àºÅ£º1004-0609(2019)-03-0538-11¡¡¡¡     ÖÐͼ·ÖÀàºÅ£ºTB31¡¡¡¡     ÎÄÏ×±êÖ¾Â룺A

¹ó½ðÊôµÄʹÓÃÌصã¿É¹é½áΪ¡°ÉÙ¡¢Ð¡¡¢¾«¡¢¹ã¡¢¹ó¡±£¬¼´ÅúÁ¿¼°ÓÃÁ¿ÉÙ£¬µ¥¼þÎïÆ·¼°ÔªÆ÷¼þÌå»ý¡¢ÖÊÁ¿Ð¡£¬µ«ÊǼ¼ÊõÐÔÄÜÒªÇ󾫡¢Ó¦ÓÃÓڹؼüºÍºËÐIJ¿Î»£¬Ó¦ÓÃÁìÓò¹ã£¬Ê¹ÓüÛÖµ°º¹ó¡£Òò´Ë£¬¸ßЧ¡¢µÍ³É±¾µØÑз¢¸ßÐÔÄܹó½ðÊôвÄÁÏÊǵ±Ç°¹ó½ðÊô²ÄÁÏÑо¿ÕßÆÈÇÐÐèÒª½â¾öµÄÎÊÌ⡣Ȼ¶øÓÉÓÚÓÃÁ¿ÉÙ¡¢Ñо¿³É±¾¸ß£¬¹ó½ðÊôºÏ½ðÏàͼµÄÑо¿Ê®·Ö±¡Èõ£¬ÄÑÒÔΪ¹ó½ðÊôºÏ½ðµÄʵÑéÑо¿ºÍвÄÁÏ¿ª·¢ÌṩӦÓеÄÖ¸µ¼¡£Òò´Ë£¬¹¹½¨¹ó½ðÊôºÏ½ðÏàͼ²¢½¨Á¢Ïà¹ØÌåϵµÄÈÈÁ¦Ñ§Êý¾Ý¿âÊÇÑз¢¹ó½ðÊôвÄÁÏÆÈÇÐÐèÒª¿ªÕ¹µÄ¹¤×÷¡£

Au-Pt ÌåϵºÏ½ðÓÉÓÚ¾ßÓÐÁ¼ºÃµÄÎïÀí¡¢»¯Ñ§¼°ÉúÎïÐÔÄÜ£¬Ê¹ÆäÔÚµç×ÓÆ÷¼þ¡¢´ß»¯¼Á¡¢ÉúÎïÒ½Ò©¡¢Î¢µç×Ó·â×°µÈÁìÓòµÃµ½Á˹㷺µÄÓ¦ÓÃ[1-3]¡£ÔçÔÚ1986 Ä꣬OKAMOTOµÈ[4]µÚÒ»´Î¶ÔAu-Pt¶þÔªºÏ½ðÏàͼ½øÐÐÆÀ¹À¡£ËûµÄÆÀ¹ÀÖ÷ÒªÊDzο¼20ÊÀ¼Í50ºÍ60Äê´úÀûÓÃX ÉäÏßÑÜÉä·¨¡¢ÈÈ·ÖÎö·¨ÒÔ¼°µç×è·¨»ñµÃµÄÏàƽºâÊý¾Ý£¬¶ø¶ÔÓÚÈÈÁ¦Ñ§Êý¾Ý£¬ÔÚOkamoto µÄÕâ´ÎÆÀ¹ÀÖдÓδÉæ¼°¡£ºóÀ´£¬GROLIERµÈ[5]ÀûÓÃÓëOKAMOTOµÈ[4]ÆÀ¹ÀʱËù²ÉÓõÄͬÑùÏàƽºâÊý¾Ý»ù´¡ÉÏ£¬Í¬Ê±¿¼ÂÇÁËÈÈÁ¦Ñ§Êý¾Ý£¬ÀûÓÃÑÇÕý¹æÈÜÌåÄ£ÐͶÔÒºÏàÒÔ¼°ÃæÐÄÁ¢·½Ïà(FCCÏà)ÖØÐÂÆÀ¹À¡£GROLIERµÈÆÀ¹Àºó»ñµÃµÄAu-Pt ¶þԪϵͳµÄÈÈÁ¦Ñ§²ÎÊý¿ÉÒԳɹ¦µØÔÙÏִ󲿷ֵÄÏàƽºâºÍÈÈÁ¦Ñ§ÊµÑéÊý¾Ý¡£µ«ÊÇ£¬ÀûÓÃGROLIERµÈÆÀ¹ÀµÄÈÈÁ¦Ñ§²ÎÊýÍâÑÓAu-Pt ÔªÏàͼÖÁ¾ø¶ÔÁã¶Èʱ£¬Æ½ºâÁ½Ïà³É·Ö·Ö±ðΪ´¿Pt ºÍ~3%Pt(Ħ¶û·ÖÊý)£¬ÕâÓëÈÈÁ¦Ñ§µÚÈý¶¨ÂÉÏàì¶Ü¡£ÐìÏþÄþµÈ[2]»ùÓÚ×î½üʵÑé²âµÃµ½µÄAu-Pt ¶þÔªÌåϵÏàƽºâÊý¾Ý£¬ÀûÓà CALPHAD ·½·¨ÖØÐÂÆÀ¹ÀAu-Pt ¶þÔªÌåϵµÄÈÈÁ¦Ñ§²ÎÊý¡£²ÉÓÃÑÇÕý¹æÈÜÌåÄ£ÐÍRedlich-Kister µÈʽÃèÊöÒºÏàºÍÃæÐÄÁ¢·½ÏàµÄGibbs ×ÔÓÉÄÜ¡£¿¼ÂÇÈÈÁ¦Ñ§µÚÈý¶¨ÂɵÄÏÞ¶¨£¬ÒÔÔÙÏÖÏàƽºâÊý¾ÝºÍ¹ÌÏàÈÈÁ¦Ñ§ÐÔÖÊ£¬°üÀ¨»î¶ÈºÍ»ìºÏìÊ£¬ÓÅ»¯Au-Pt ¶þԪϵͳÈÈÁ¦Ñ§²ÎÊý¡£ÓÅ»¯½á¹û±íÃ÷£ºAu-Pt ºÏ½ðϵͳµÄÈܽâ¶È¼ä϶±ß½çÏò¸»Au ²àÆ«ÒÆ£¬Æ䶥µãλÖÃÔÚ1200 ¡æ£¬Au-56%Pt(Ħ¶û·ÖÊý)¡£¶ø¸ÃÌåϵµÄʧÎÈ·Ö½âÌØÕ÷¶Ô²ÄÁÏ×éÖ¯¼°ÐÔÄܵÄÓ°Ï첢ûÓеõ½ÏµÍ³Ñо¿¡£

Au-Sn ºÏ½ð¾ßÓнþÈóÐԺᢺ¸½ÓÇ¿¶È¸ßºÍÄÍÊ´ÐÔÄܺõÈÓŵ㣬¹ã·ºÓ¦ÓÃÓڸ߿ɿ¿Î¢µç×ÓÆ÷¼þºÍ¹âµç×ÓÆ÷¼þ·â×°µÄÇ¥º¸²ÄÁÏ£¬¸ÃºÏ½ðÇ¥ÁÏϵµÄ¶þÔª¹²¾§³É·ÖΪ80Au/20Sn£¬ÈÛµãΪ280 ¡æ£¬ÊÇÄ¿Ç°ÈÛµãÔÚ280~360 ¡æÄÚΩһ¿ÉÒÔÌæ´ú¸ßÈÛµãǦ»ùºÏ½ðµÄÇ¥ÁÏ[6-8]¡£Au-Sn ¶þÔªÌåϵ´æÔÚ4¸ö¶þÔªºÏ½ð»¯ºÏÎï[9]£¬·Ö±ðΪAuSn¡¢AuSn2¡¢AuSn4 ºÍ Au5Sn¡£AuSnµÄ¾§Ìå½á¹¹ÊôÓÚÁù·½¾§Ïµ£¬¾ßÓÐNiAsÐͽṹ£¬¿Õ¼äȺΪ P63/mmc£»AuSn2µÄ¾§Ìå½á¹¹ÊôÓÚÕý½»¾§Ïµ£¬¿Õ¼äȺΪPBCA£¬¾§°ûÖк¬ÓÐ24¸öÔ­×Ó£¬ÆäÖÐ 8¸öAu Ô­×Ó£¬16¸öSn Ô­×Ó£»AuSn4µÄ¾§Ìå½á¹¹Ò²ÊôÓÚÕý½»¾§Ïµ£¬¾ßÓÐ PtSn4Ðͽṹ£¬¿Õ¼äȺΪABA2£»Au5SnµÄ¾§Ìå½á¹¹ÊôÓÚÈý·½¾§Ïµ£¬¿Õ¼äȺΪR3H¡£

ÓÉÓÚÆä½Ï¸ßµÄ»îÐÔ£¬Pt-Sn ´ß»¯¼Á¹ã·ºÓ¦ÓÃÓÚ´ß»¯ÖØÕû¡¢µç¼«´ß»¯Ñõ»¯ºÍÍéÌþ´ß»¯ÍÑÇâ[10-12]¡£´ËÍ⣬Pt-Sn ´ß»¯¼ÁÔÚ´ß»¯¼ÓÇâ·½ÃæÒ²¾ßÓÐÓ¦ÓÃDZÄÜ¡£Pt-Sn ¶þÔªÌåϵ´æÔÚ5¸ö¶þÔªºÏ½ð»¯ºÏÎï[13]£¬·Ö±ðΪPtSn¡¢PtSn2¡¢PtSn4¡¢Pt2Sn3ºÍ Pt3Sn¡£ÆäÖÐPt3SnµÄÐγÉζȽϸߣ¬Óɹ²¾§·´Ó¦Éú³É£»ÔÚ898 ¡æʱ£¬ PtSnÓëÒºÏà·¢Éú°ü¾§·´Ó¦Éú³ÉPt2Sn3£»748 ¡æʱ£¬Pt2Sn3ÓëÒºÏà·¢Éú°ü¾§·´Ó¦£¬Éú³ÉPtSn2£»PtSn2ÓëÒºÏàÔÚ540 ¡æʱ·¢Éú°ü¾§·´Ó¦£¬Éú³ÉPtSn4£»228 ¡æʱ£¬Ê£ÓàµÄÒºÏà·¢Éú¹²¾§·´Ó¦£¬Íêȫת»¯ÎªPtSn4ºÍ¦Â-Sn£¬¶ø¦Â-SnÔÚÊÒÎÂʱת»¯Îª¦Á-Sn[14]¡£

Ç°ÆÚÑо¿±íÃ÷£¬ÔÚ´«Í³Pt-Sn´ß»¯¼Á»ù´¡ÉÏ£¬¼ÓÈëAu£¬²ÉÓõÈÌå»ý½þ×Õ·¨ÖƱ¸ÁËAu-Pt-Sn ´ß»¯¼Á£¬ÔڱȽÏÑо¿Au ¶ÔÒ춡ÍéÍÑÇâ´ß»¯¼Áת»¯ÂʺÍÑ¡ÔñÐÔµÄÓ°Ïìºó£¬·¢ÏÖ¼ÓÈëÒ»¶¨Á¿Au ºó£¬ÔöÇ¿ÁË´ß»¯¼Á»îÐÔ[10]¡£ALEXANDRAµÈ[16]ÓÃʵÑéµÄ·½·¨¶ÔAu-Pt-Sn ÈýÔªÌåϵ¸»Sn²¿·Ö(Sn¡Ý50%£¬Ä¦¶û·ÖÊý)µÄ400 ¡æµÈνØÃæ½øÐÐÁËÑо¿¡£DONGµÈ[17]¼ÆËãÁËAu-Pt-Sn Ìåϵ400 ¡æ¡¢320 ¡æºÍ150 ¡æµÄµÈνØÃ棬²¢¶ÔAu-20%Sn-Pt µÄ΢¹Û×éÖ¯ºÍÏàƽºâÐÅÏ¢½øÐÐÁËÑо¿ºÍ±íÕ÷¡£ALEXANDRAµÈ[16]ºÍDONGµÈ[17]Ö÷ÒªÊǶÔAu-Pt-SnÌåϵµÄµÍεÈνØÃæ½øÐÐÑо¿£¬¶ø±¾ÎĶÔAu-Pt-SnÈýԪϵºÏ½ðÏàͼ700 ¡æµÈνØÃæ½øÐÐÑо¿£¬Ì½Ë÷Ìåϵ¿ÉÄÜ´æÔÚµÄÏàÒÔ¼°Ïà¹Øϵ£¬Îª²ÄÁϵÄÖƱ¸ÓëÐÔÄÜÑо¿Ìṩ¿ÆѧÒÀ¾Ý¡£

1  ʵÑé

ʵÑéÓÃÔ­ÁÏΪ´¿¶È·Ö±ðΪ99.99%µÄ¸ß´¿½ð¡¢99.95%²¬ºÍ99.99%Îý¡£ÊµÑéËùÉè¼ÆµÄºÏ½ð³É·ÖÈç±í1 Ëùʾ¡£¸÷ºÏ½ðÑùÆ·µÄÖÊÁ¿Îª 5 g¡£ºÏ½ðÔÚë²Æø±£»¤Ï½øÐÐÕæ¿Õµç»¡ÈÛÁ¶¡£Îª±£Ö¤ºÏ½ð³É·Ö¾ùÔÈ£¬Ã¿¸öºÏ½ðÑùÆ·ÖÁÉÙÈÛÁ¶ 3 ´Î¡£ÈÛÁ¶ºó£¬½«ËùÈÛÖý¶§´ÓÈÛÁ¶Â¯ÖÐÈ¡³ö£¬¼ô³ÉС¿é£¬È»ºóÔÙ´ÎÈÛÁ¶£¬È·±£ÑùÆ·³É·Ö¾ùÔÈ¡£Íê³ÉºÏ½ðÖƱ¸ºó£¬½«ÑùÆ··âÈëÕæ¿ÕʯӢ²£Á§¹ÜÖнøÐоùÔÈ»¯Í˻𡣽«ÑùÆ·ÖÃÓÚ700 ¡æ¾ùÔÈ»¯ÍË»ð20 d£¬È»ºó½«ÊÔÑùÖÃÓÚÀäË®ÖпìËÙ´ã»ð¡£¶Ô¾­¹ý¾ùÔÈ»¯ÈÈ´¦ÀíºóµÄ¿é×´ºÏ½ðÊÔÑù£¬ÓôÖɰֽĥȥ±íÃæµÄÑõ»¯²ã£¬²¢¾­Ä¥ÑùºÍÅ×¹âµÃµ½Ò»ÍêÕûƽÃ棬½øÐÐXÉäÏßÑÜÉä·ÖÎöºÍµç×Ó̽Õë·ÖÎöÏÔ΢×éÖ¯Óë΢Çø³É·Ö·ÖÎö¡£ÎïÏà·ÖÎöÊÇÓÃEmpyreanÐÍ(ÅÁÄÉ¿Æ)XÉäÏßÑÜÉäÒǽøÐУ¬·øÉäԴΪCu K¦Á£¬¹¤×÷µçѹΪ40 kV£¬¹¤×÷µçÁ÷Ϊ40 mA£¬É¨ÃèËÙ¶ÈÑ¡Ôñ10 (¡ã)/min£¬É¨Ãè½Ç¶È2¦ÈΪ10¡ã~100¡ã¡£ÐÎò·ÖÎöºÍ΢Çø³É·Ö·ÖÎö²ÉÓõÄÊǵç×Ó̽ÕëÏÔ΢·ÖÎöÒÇ(EPMA)£¬ÒÇÆ÷ÐͺÅÊÇJXA8230(ÈÕ±¾µç×Ó)£¬±³É¢Éäµç×ÓÏñ·Ö±æÂÊÊÇ20 nm£¬¼ÓËÙµçѹ0~30 kV£¬ÊøÁ÷·¶Î§Îª1¡Á10-5~1¡Á10-12 £¬¶¨Á¿·ÖÎö¾«¶È¿ÉÒÔʶ±ð0.2%(ÖÊÁ¿·ÖÊý)ÒÔÉϵÄÔªËØ¡£

±í1  ʵÑéÉè¼ÆºÏ½ðµÄÃûÒå³É·Ö

Table 1  Nominal  compositions  of  designed  Au-Pt-Sn  alloys

2  ½á¹ûÓëÌÖÂÛ

ͼ1ºÍ±í2Ëùʾ·Ö±ðΪºÏ½ð1(Au16Pt69Sn15)¾­700 ¡æ¾ùÔÈ»¯ÍË»ðºóÑùÆ·µÄµç×Ó̽ÕëÏÔ΢×éÖ¯ÕÕƬºÍµç×Ó̽Õë΢Çø³É·Ö·ÖÎö¡£Í¼2ËùʾΪƽºâºÏ½ð1µÄXRDÆס£´Óͼ1(a)¡¢(b)ÖпÉÒÔ¿´³ö£¬ºÏ½ð1µÄƽºâ×éÖ¯ÖдæÔÚ3¸öÏ࣬¸ù¾Ý±í2³É·Ö·ÖÎö¿ÉÖª£º°×É«»ùÌåΪµ÷·ù·Ö½âAu-PtºÏ½ð£¬Æä³É·ÖΪAu80.45Pt19.55(¸»Au¹ÌÈÜÌå)£¬½á¹¹ÓëPt½á¹¹Ò»Ö£»ºÚÉ«Ö¦¾§ÏàΪAu4.51Pt74.28Sn21.21£¬³É·ÖÓëPt3Sn³É·Ö½Ó½ü£¬½øÒ»²½ÓÉͼ2ËùʾµÄXRDÆ׿ÉÒÔ·¢ÏÖ£¬ÆäÑÜÉä·å¶¼¿ÉÒÔ±»Pt3SnËù±ê¶¨¡£ºÚÉ«Ö¦¾§ÖÜΧµÄ»ÒÉ«ÇøÓòΪPt-SnºÏ½ðÏàÓëÁíÒ»ÖÖµ÷·ù·Ö½âAu-PtºÏ½ð(¸»Pt¹ÌÈÜÌå)µÄ»ìºÏÏà¡£Á½ÖÖµ÷·ù·Ö½â¹ÌÈÜÌå½á¹¹Ïàͬ£¬¶¼ÓëPtµÄ½á¹¹Ò»Ö£¬µ«³É·Ö²»Í¬£¬°×É«ÇøÓò¹ÌÈÜÌåAuº¬Á¿½Ï¸ß£¬»Ò°×É«ÇøÓòPtº¬Á¿½Ï¸ß¡£¶ø»ÒÉ«ÓкÚɫС¿ÅÁ£¾Û¼¯ÇøÓò¹ÌÈÜÁ˲¿·ÖSn£¬ÔÚSnº¬Á¿½Ï¸ßÇøÓò¼´ÔÚºÚÉ«Ö¦¾§ÖÜΧÐγÉÁËPt-SnºÏ½ð£¬½øÒ»²½ÓÉXRD½á¹û·ÖÎö¿ÉÖª£¬¸ÃPt-SnºÏ½ðΪHCPÏ࣬¿É±ê¶¨ÎªPtSn¡£Òò¶ø¿ÉÒÔÈ·¶¨ºÏ½ð1ÔÚ700 ¡æʱ£¬´æÔÚ3¸öÏ࣬¼´Pt3Sn¡¢HCP-PtSn ÒÔ¼°µ÷·ù·Ö½âÐγɵÄÁ½Öֳɷֲ»Í¬µÄFCC¹ÌÈÜÌå¡£Õâ¸öʵÑé½á¹û˵Ã÷£¬ÔÚAu-Pt-Sn ÈýÔªºÏ½ðÌåϵ¸»PtÇø£¬ÔÚ700 ¡æµÈνØÃæ´æÔÚ1¸ö°üº¬Pt3Sn+FCC-A1+PtSnµÄÈýÏàÇø¡£ÓÉͼ3ÖкϽð1µÄEPMAÔªËØÃæ·Ö²¼Í¼»¹¿ÉÒÔ¸ü¼ÓÇåÎúÖ±¹ÛµÄ¿´³ö£¬µ÷·ù·Ö½â¸»Pt¹ÌÈÜÌåµÄº¬Á¿½Ï¸»Au¹ÌÈÜÌåµÄº¬Á¿¶à£¬ÇÒAuÔªËØÖ»¼¯Öзֲ¼ÔÚ°×É«ÇøÓò£¬SnÔªËصķֲ¼Ò²±È½Ï¼¯ÖÐÔÚºÚÉ«ÇøÓò£¬¶øPtÔªËصķֲ¼·¶Î§½Ï¹ã£¬¶øÇҽϾùÔÈ¡£

ͼ1  ºÏ½ð1 Au16Pt69Sn15µÄÏÔ΢×éÖ¯

Fig. 1  Microstructure of Au16Pt69Sn15 alloy at different magnifications

±í2  ͼ1(c)¸÷µãµÄEMPA·ÖÎö½á¹û

Table 2  EPMA elemental analysis and possible phase of each spot marked in Fig.1(c)

ͼ2  ºÏ½ð1µÄXRDÆ×

Fig. 2  XRD pattern of alloy 1 (Au16Pt69Sn15)

ͼ4ºÍ5Ëùʾ·Ö±ðΪºÏ½ð2(Au16Pt54Sn30)µÄµç×Ó̽ÕëÏÔ΢×éÖ¯ÕÕƬºÍXRDÆס£ºÏ½ð2µÄXRDÆ×ÖпÉÇåÎú±ê¶¨³öPt3Sn¡¢PtSnÁ½Ïà¡£ÓëºÏ½ð1Ïà±È£¬Ëæ×ÅSnº¬Á¿µÄÔö¼Ó£¬Ptº¬Á¿ËæÖ®¼õÉÙ£¬PtSnÏàÍêÈ«´Ó¸»Pt¹ÌÈÜÌåÖÐÎö³ö£¬¸»Pt¹ÌÈÜÌåµÄÁ¿Ò²Ëæ×ÅPtSnÏàµÄÎö³öºÍPt3SnµÄ´óÁ¿Éú³É¶ø´ó·ù¼õÉÙ¡£½øÒ»²½µÄµç×Ó̽Õë³É·Ö·ÖÎö·¢ÏÖ£¬ºÏ½ð2Ò²ÓÉÈýÏà×é³É£¬Èç±í3Ëùʾ¡£¸ù¾Ý³É·Ö·ÖÎöµÄ½á¹û(¼û±í3)¿ÉÅбð£¬ÉîºÚÉ«ÏàΪPtSn£¬Ç³»ÒÉ«ÎïÏàΪPt3Sn£¬»ùÌåΪAu-PtºÏ½ð(¸»Au¹ÌÈÜÌå)¡£X ÉäÏßÑÜÉä·¢ÏÖ£¬Au-PtºÏ½ð»ùÌåµÄ½á¹¹ÓëAuÒ»Ö£¬ÓÉ´Ë¿ÉÒÔÍƲ⣬ËæןϽð³É·ÖµÄ¸Ä±ä£¬µ÷·ù·Ö½â¹ÌÈÜÌåµÄ½á¹¹Ò²ÓÐËù±ä»¯¡£ÓɺϽð2µÄXRDÆ×»¹¿ÉÒÔ¿´³ö£¬×îÇ¿·åµÄ³öÏÖÊÇÒòΪºÏ½ðÏàÖÐPt3SnµÄÊýÁ¿½Ï¶àÇÒÅÅÁоßÓÐÒ»¶¨µÄÈ¡ÏòÐÔ¡£Í¼6ËùʾΪºÏ½ð2µÄEPMAÔªËØÃæ·Ö²¼Í¼¡£ÓÉͼ6¿ÉÒÔ¸ü¼ÓÇåÎúÖ±¹ÛµØ¿´³ö£¬PtÔªËØÓëSnÔªËØÖ÷ÒªÒԺϽðÏàµÄÐÎʽ´æÔÚ£¬AuÔªËØÒÀ¾ÉÖ»¼¯Öзֲ¼ÔÚ°×É«ÇøÓò£¬·Ö²¼Ãæ»ý½ÏºÏ½ð1µÄ´ó¡£

ͼ7ºÍ8Ëùʾ·Ö±ðΪºÏ½ð2(Au16Pt42Sn42)µÄµç×Ó̽ÕëÏÔ΢×éÖ¯ºÍXRDÆס£·ÖÎö¿ÉÖª£¬ºÏ½ð3µÄÎïÏà×é³ÉÓëºÏ½ð2µÄ»ù±¾Ò»Ö£¬Ö»ÊǺϽð3ÖлÒÉ«Pt3SnÏàµÄÁ¿´ó´ó¼õÉÙ£¬Óɸ»Pt¹ÌÈÜÌåÈ¡¶ø´úÖ®£¬ºÚÉ«¿ÅÁ£ÎªPtSnÏ࣬µ÷·ù·Ö½â¸»AuÓ븻Pt¹ÌÈÜÌåͬʱ´æÔÚ£¬ÔÚ¸»AuÇøÓò£¬»¹ÓÐÐÂÏàAu5SnÉú³É¡£½áºÏͼ8¡¢Í¼9ºÍ±í4·ÖÎö¿ÉÖª£¬µ÷·ù·Ö½âºÏ½ð¾ßÓÐÁ½Öֽṹ£¬¿ÉÒÔÍƲ⣬ºÏ½ð3ÑùÆ·ÐγÉÁËÁ½ÖֽṹÀàÐ͵ĵ÷·ù·Ö½âºÏ½ð£¬°üÀ¨Á˺Ͻð1Óë2µÄµ÷·ù·Ö½âºÏ½ðÀàÐÍ¡£ÕýÒòΪÁ½Öֽṹµ÷·ù·Ö½âºÏ½ðµÄ¹²Í¬´æÔÚ£¬ËùÒÔXRDÑÜÉä·ÖÎö²Å¼ì²â³öºÏ½ð¾ßÓÐAuºÍPtÁ½ÖֽṹµÄÎïÏà´æÔÚ¡£Õâ¸öʵÑé½á¹û˵Ã÷£¬ÔÚ Au-Pt-Sn ÈýÔªºÏ½ðÌåϵÖУ¬ÔÚ700 ¡æµÈνØÃæ´æÔÚ1¸ö°üº¬PtSn+FCC-A1+ Au5SnµÄÈýÏàÇø¡£

ͼ3  ºÏ½ð1µÄÏÔ΢×éÖ¯¼°EPMAÔªËØÃæ·Ö²¼·ÖÎö

Fig. 3  Microstructures of alloy 1 and EPMA mapping distributions of elements in alloy 1 (Au16Pt69Sn15)

ͼ4  ºÏ½ð2(Au16Pt54Sn30)µÄÏÔ΢×éÖ¯

Fig. 4  Microstructures of alloy 2 (Au16Pt54Sn30) at different magnifications

±í3  ͼ4(c)Öи÷µãµÄEMPA·ÖÎö½á¹û

Table 3  EPMA elemental analysis and possible phase of each spot marked in Fig.4(c)

ͼ5  ºÏ½ð2µÄXRDÆ×

Fig. 5  XRD pattern of alloy 2 (Au16Pt54Sn30)

ͼ6  ºÏ½ð2µÄÏÔ΢×éÖ¯¼°EPMAÔªËØÃæ·Ö²¼·ÖÎö

Fig. 6  Microstructures and EPMA mapping distributions of element of alloy 2 (Au16Pt54Sn30)

ͼ10ËùʾΪºÏ½ð4(Au16Pt30Sn54)µÄµç×Ó̽ÕëÏÔ΢×éÖ¯ÕÕƬ¡£ºÏ½ð4Ϊ¸»ÎýÇøºÏ½ð£¬ÇÒÔÚ700 ¡æʱ£¬ÓÐÒºÏà´æÔÚ£¬»ÒÉ«ÇòÐοÅÁ£ÖÜΧµÄÖ¦¾§Ïà¾ÍÊÇ´ÓÒºÏàÖÐÎö³öµÄÎïÏà¡£¸ù¾Ý±í6¡¢7¡¢8µÄEPMA³É·Ö·ÖÎö½á¹û£¬»ÒÉ«ÇòÐÎÏàΪPtSnÖйÌÈÜÁËÉÙÁ¿AuÐγɵÄPt47.5Sn47.5Au5ÈýÔªºÏ½ðÏ࣬½áºÏͼ11ÖеÄXRD·ÖÎö¿ÉÖª£¬¸ÃÈýÔªºÏ½ðÏàµÄ½á¹¹ÓëPtSnÏàͬ£»ÇòÐÎÏàÖÜΧµÄϸС֦¾§Ïà½Ï¸´ÔÓ£¬ÆäÖа×É«Ö¦¾§ÖеĻҺÚÉ«ÎïÏàΪPt2Sn3£¬ÆäÖл¹ÓÐÉÙÁ¿µÄAu¹ÌÈÜ£»°×É«Ö¦¾§ºÍÆäÖÐÑÕÉ«½ÏdzµÄ»Ò°×É«×éÖ¯ÎïÏàΪҺÏàÇø£¬³É·ÖÊÇAu47.5Sn47.5Pt5£¬ÓÉXRD·ÖÎö¿ÉÖªÆä½á¹¹ÓëAuSnÏàͬ£»¶ø°×É«Ö¦¾§ÖÜΧºÚ»ÒÉ«ÎïÏàÒ²ÊÇÒºÏàÇø£¬³É·ÖÊÇAu35.05Sn64.95£¬ÓÉXRD·ÖÎö¿ÉÖªÆä½á¹¹ÓëAuSn2Ïàͬ¡£ÓÉÑùÆ·4µÄXRDÆ×»¹¿ÉÒÔ¿´³ö£¬×îÇ¿·åµÄ³öÏÖÊÇÒòΪºÏ½ðPt47.5Sn47.5Au5µÄÇòÐοÅÁ£½Ï´ó£¬ÊýÁ¿½Ï¶àÇÒÅÅÁоßÓÐÒ»¶¨µÄÈ¡ÏòÐÔ£¬ËùÒÔ²ÅÓÐ×îÇ¿·åµÄ³öÏÖ¡£½øÒ»²½ÓÉͼ12ºÏ½ðÔªËصÄÃæ·Ö²¼Í¼ÉîÈë·ÖÎö¿ÉÖª£¬»ÒÉ«ÇòÐÎÎïÏàÖÜΧÖ÷ÒªÊÇAuÔªËغÍSnÔªËصĸ»¼¯Çø£¬ÇÒΪҺÏàÇø£¬ÓÉÓÚÍË»ðζȽϸߣ¬ÍË»ðʱ¼ä½Ï³¤£¬µ¼ÖÂÒºÏàÇøÉú³ÉÁËÁ½ÖÖ²»Í¬µÄAu-SnºÏ½ðÏà¡£ÓÉ´Ë¿ÉÒԵóö½áÂÛ£¬ÔÚ Au-Pt-Sn ÈýÔªºÏ½ðÌåϵÖУ¬ÔÚ700 ¡æµÈνØÃæ´æÔÚ1¸ö°üº¬PtSn+ Pt2Sn3+ÒºÏàµÄÈýÏàÇø¡£

ͼ7  ºÏ½ð3(Au16Pt42Sn42)µÄÏÔ΢×éÖ¯

Fig. 7  Microstructures of alloy 3 (Au16Pt42Sn42) alloy at different magnifications

±í4  ͼ7(c)¸÷µãµÄEMPA·ÖÎö½á¹û

Table 4  EPMA elemental analysis and possible phase of each spot marked in Fig.7(c)

±í5  ͼ7(d)µã1µÄEMPA·ÖÎö½á¹û

Table 5  EPMA elemental analysis and possible phase of spot 1 marked in Fig.7(d)

ͼ13ºÍ14ËùʾΪºÏ½ð5(Au16Pt20Sn64)µÄµç×Ó̽ÕëÏÔ΢×éÖ¯ÕÕƬ¼°ÆäXRDÆס£Í¬Ñù£¬ºÏ½ð5ÔÚ700 ¡æʱҲÓÐÒºÏà´æÔÚ¡£Í¼13ºÍ±í9¡¢±í10·ÖÎö¿ÉÖª£¬ºÏ½ðÊÔÑùÓÉAuSn¡¢Pt2Sn3¡¢AuSn2ºÍAuSn4ËÄÏà×é³É£»Í¼ 15(a)µÄµç×ÓÕÕƬÖУ¬»ÒÉ«ÇòÐÎÎïÏàΪPt2Sn3£¬»ÒÉ«»ùÌåºÍÕë×´ÎïÏàΪAuSn2£¬ºÚÉ«ÎïÏà³É·ÖΪAu24.5Sn75.5£¬¾­Í¼14½øÒ»²½È·ÈÏΪ¸ÃÏàΪAuSn4£»°×ɫС¿ÅÁ£ÎªAuSn¡£½øÒ»²½ÓÉͼ15ºÏ½ðÔªËصÄÃæ·Ö²¼Í¼ÉîÈë·ÖÎö¿ÉÖª£¬»ÒÉ«ÇòÐÎÎïÏàÖÜΧÖ÷ÒªÊÇAuÔªËغÍSnÔªËصĸ»¼¯Çø£¬ÇÒΪҺÏàÇø£¬ÓÉÓÚÍË»ðζȽϸߣ¬ÍË»ðʱ¼ä½Ï³¤£¬µ¼ÖÂÒºÏàÇøÉú³ÉÁË3ÖÖ²»Í¬µÄAu-SnºÏ½ðÏà¡£Õâ¸öʵÑé½á¹û˵Ã÷£¬ÔÚ Au-Pt-Sn ÈýÔªºÏ½ðÌåϵ¸»SnÇø£¬700 ¡æµÈνØÃæ´æÔÚ1¸ö°üº¬Pt2Sn3+ÒºÏàµÄÁ½ÏàÇø¡£

ͼ8  ºÏ½ð3µÄXRDÆ×

Fig. 8  XRD pattern of alloy 3 (Au16Pt42Sn42)

ͼ9  ºÏ½ð3µÄÏÔ΢×éÖ¯ºÍEPMAÔªËØ·Ö²¼Ãæ·ÖÎö

Fig. 9  Microstructures and EPMA mapping distributions of element of alloy 3 (Au16Pt42Sn42)

ͼ10  ºÏ½ð4µÄÏÔ΢×éÖ¯

Fig. 10  Microstructures of alloy 4 at different magnifications

±í6  ͼ10(b)Öи÷µãµÄEMPA·ÖÎö½á¹û

Table 6  EPMA elemental analysis and possible phase of each spot marked in Fig.10(b)

±í7  ͼ10(c)Öи÷µãµÄEMPA·ÖÎö½á¹û

Table 7  EPMA elemental analysis and possible phase of each spot marked in Fig.10(c)

ͨ¹ýÒÔÉÏ5¸öºÏ½ðÑùÆ·µÄ×éÖ¯·ÖÎö¿ÉÖª£¬ÑùÆ·ºÏ½ð1~3µÄ×éÖ¯·Ö²¼½Ï¾ùÔÈ£¬ÇÒ3¸öºÏ½ðÑùÆ·µÄ»ùµ×Ï඼ÊÇÇ¿¶È½Ï¸ßµÄAu-PtºÏ½ðµ÷·ù·Ö½âÏ࣬ËùÒԺϽð1~3µÄÇ¿¶ÈºÍÓ²¶È½Ï¸ß¡£¶øºÏ½ð4ºÍ5µÄ×éÖ¯·Ö²¼²»¾ùÔÈ£¬ÇÒ»ùµ××éÖ¯´ó¶¼ÊÇÇ¿¶ÈºÍÓ²¶È½ÏµÍµÄAu-SnºÏ½ðÏ࣬ËùÒԺϽð4ºÍ5µÄÇ¿¶ÈºÍÓ²¶È¾ù½ÏµÍ¡£¸ù¾ÝÒÔÉÏʵÑéµÄÊý¾ÝºÍÒÑÓеÄAu-Pt-SnÌåϵÈÈÁ¦Ñ§Êý¾Ý[17-18]£¬»¹¿ÉÒÔ»æÖƳö Au-Pt-SnÈýԪϵ 700 ¡æµÈνØÃæÏàͼ£¬Èçͼ16Ëùʾ¡£Í¼16ÖоØÐÎ(¡ö)±íʾÈýÏàÇøÓò¡£

±í8  ͼ10(d)µã1µÄEMPA·ÖÎö½á¹û

Table 8  EPMA elemental analysis and possible phase of spot 1 marked in Fig.10(d)

ͼ11  ºÏ½ð4µÄXRDÆ×

Fig. 11  XRD pattern of alloy 4 (Au16Pt30Sn54)

ͼ12  ºÏ½ð4µÄEPMAÔªËØ·Ö²¼Ãæ·ÖÎö

Fig. 12  EPMA mapping of elements of alloy 4 (Au16Pt30Sn54)

ͼ13  ºÏ½ð5µÄÏÔ΢×éÖ¯

Fig. 13  Microstructures of alloys at different magnifications

±í9  ͼ13(c)Öи÷µãµÄEMPA·ÖÎö½á¹û

Table 9  EPMA elemental analysis and possible phase of each spot marked in Fig.13(c)

±í10  ͼ13(d)Öи÷µãµÄEMPA·ÖÎö½á¹û

Table 10  EPMA elemental analysis and possible phase of each spot marked in Fig.13(d)

ͼ14  ºÏ½ð5µÄXRDÆ×

Fig. 14  XRD pattern of alloy 5 (Au16Pt20Sn64)

3  ½áÂÛ

1) ÔÚ700 ¡æ£¬Au-Pt-SnÈýԪϵÓÉ3¸öµ¥ÏàÇø¡¢7¸öÁ½ÏàÇøºÍ 6¸öÈýÏàÇø×é³É¡£6¸öÈýÏàÇø·Ö±ðΪPt3Sn+FCC-A1+PtSn¡¢PtSn+FCC-A1+Au5Sn¡¢PtSn+ Pt3Sn+Au5Sn¡¢Pt3Sn+FCC-A1+Au5Sn¡¢PtSn+Pt2Sn3+ÒºÏ࣬PtSn+FCC-A1+ÒºÏà¡£

ͼ15  ºÏ½ð5µÄÏÔ΢×éÖ¯ºÍEPMAÔªËØ·Ö²¼Ãæ·ÖÎö

Fig. 15  Microstructures and EPMA mapping of elements of alloy 5 (Au16Pt20Sn64)

ͼ16  Au-Pt-Sn ÈýԪϵ 700 ¡æµÈνØÃæ

Fig. 16  Isothermal section of Au-Pt-Sn system at 700 ¡æ

2) ÓÉÓÚPt-SnºÏ½ðÏàµÄÈÛµã½ÏAu-SnºÏ½ðÏà¸ß£¬ËùÒÔÔÚ700 ¡æµÈνØÃ棬´ó¶¼Ö»´æÔÚPt-SnºÏ½ðÏ࣬ÇÒËæ×ÅSnº¬Á¿µÄÔö¼Ó£¬µ÷·ù·Ö½âAu-PtºÏ½ð¹ÌÈÜÌåÖð½¥Ïûʧ£¬ÔںϽð4 ºÍ5ÖÐÍêÈ«Ïûʧ¡£ºÏ½ð1~3ÓÉÓÚ´æÔÚµ÷·ù·Ö½âÏ࣬×éÖ¯·Ö²¼½Ï¾ùÔÈ£¬ºÏ½ðÇ¿¶ÈºÍÓ²¶ÈÃ÷ÏԱȺϽð4ºÍ5µÄ¸ß¡£

REFERENCES

[1] SHEN Yi-hong, LI Yu-ming, LIU Hai-chao. Base-free aerobic oxidation of glycerol on TiO2-supported bimetallic Au-Pt catalysts[J]. Journal of Energy Chemistry, 2015, 24(5): 669-673.

[2] XU Xiao-ning, REN Yu-ping, LI Chang-fa, LI Song, QIN Gao-wu. Thermodynamic assessment of Au-Pt system[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1432-1436.

[3] LIU Ya-jun, WANG Jiang, DU Yong, SHENG Guang, LONG Zhao-hui, ZHANG Li-jun. Phase boundary migration, Kirkendall marker shift and atomic mobilities in fcc Au-Pt alloys[J]. CALPHAD, 2012, 36: 94-99.

[4] OKAMOTO H, MASSALSKI T. The Au-Pt system[J]. Journal of Phase Equilibria, 1985, 6(1): 46-56.

[5] GROLIER V, SCHMID F R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of Au-Pt and Au-Pt-Sn system[J]. Journal of Electronic Materials, 2008, 37(3): 264-278.

[6] HU Jie-qiong, XIE Ming, ZHANG Ji-ming, LIU Man-men, YANG You-cai, CHEN Yeng-tai. First principles study of Au-Sn intermellic[J]. Acta Physica Sinica, 2013, 62(24): 247102.

[7] ARABI F, THEOLIER L, MARTINEAU D, DELETAGE J Y, MEDINA M, WOIRGARD E. Power electronic assemblies: Thermo-mechanical degradations of gold-tin solder for attaching devices[J]. Microelectronics Reliability, 2016, 64: 409-414.

[8] HUANG M L, YANG Y C, CHEN Y, DONG C. Microstructure and mechanical properties of Sn-rich Au-Sn solders designed using cluster-plus-glue-atom model[J]. Materials Science and Engineering A, 2016, 664: 221-226.

[9] DEBSKI A, GASIOR W, MOSER Z, MAJOR R. Enthalpy of formation of intermetallic phases from the Au-Sn system[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 173-177.

[10] PATRICIA G, CORRADINIA ERMETE ANTOLINI, JOELMA PEREA. Electro-oxidation of ethanol on ternary non-alloyed Pt¨CSn¨CPr/C catalysts[J]. Journal of Power Sources, 2015, 275: 377-383.

[11] LAI Yu-long, HE Song-bo, LUO Sha, BI Wen-jun, LI Xian-ru, SUN Cheng-lin, SESHAN K. Hydrogen peroxide modified Mg-Al-O oxides supported Pt-Sn catalysts for paraffin dehydrogenation[J]. Catalysis Communications, 2015, 69: 39-42.

[12] SHAN Yu-ling, WANG Ting, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Hierarchical MgAl2O4 supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation[J]. Catalysis Communications, 2016, 84: 85-88.

[13] ZHOU Wei, LIU Li-juan, LI Bao-ling, WU Ping, SONG Qing-gong. Structural, elastic and electronic properties of intermetallics in the Pt-Sn system: A density functional investigation[J]. Computational Materials Science, 2009, 46(4): 921-931.

[14] Vincent Grolier, Rainer Schmid-Fetzer. Thermodynamic analysis of the Pt-Sn system[J]. Journal of Alloys and Compounds, 2009, 46(4): 921-931.

[15] WANG Jian-she, XI Jing-yu, ZHANG Lei, ZHANG Jiu-jun, GUO Xun, ZHAO Jian-hong, SONG Cheng-ying, WANG Liu-cheng. Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation[J]. Electrochimica Acta, 2013, 112: 480-485.

[16] ALEXANDRA N T, LAILA O, KJEKSHUS A, KJEKSHUS A OLSEN. The tin-rich part of the Au-Pt-Sn system[J]. Journal of alloys and compounds, 2001, 314(1/2): 92-95.

[17] DONG Hong-qun, VUORINEN V, BROAS M, PAULASTO-KR€OCKEL M. Thermodynamic reassessment of the Au-Pt-Sn system and microstructural evolution of the (AuSn)eut-Pt interconnection[J]. Journal of Alloys and Compounds, 2016, 688: 388-398.

Isothermal section of Au-Pt-Sn ternary system at 700 ¡æ

HU Jie-qiong1, 2, XIE Ming1, 2, CHEN Song1, 2, CHEN Yong-tai1, 2, WANG Song2, WANG Sai-bei1, 2

(1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;

2. Kunming Institute of Precious Metals, Kunming 650106, China)

Abstract: The  isothermal  section  of  the  Au-Pt-Sn  ternary  system  at  700 ¡æ  was  investigated  by  X-ray  diffractometer and electron probe microanalyzer. The results show that the isothermal  section  of  the  Au-Pt-Sn  ternary  system  at  700 ¡æ is composed of three single-phase regions, seven two-phase regions and six three-phase regions. The six three-phase regions including Pt3Sn+FCC-A1+PtSn, PtSn+FCC-A1+Au5Sn, PtSn+Pt3Sn+Au5Sn, Pt3Sn+FCC-A1+Au5Sn, PtSn+Pt2Sn3+Liquid, PtSn+FCC-A1+Liquid. The spinodal decomposition reaction of Au-Pt alloy exists in the Au-Pt-Sn system. With decreasing Pt content, the spinodal decomposition phase in the alloy gradually disappears, and it completely disappears in Au16Pt30Sn54 and Au16Pt20Sn64 samples. Because the melting point of Pt-Sn alloy phase is higher than that of Au-Sn alloy, most of phases in 700 ¡æ isothermal section are Pt-Sn alloy, while Au-Sn alloy phase mainly exists in liquid phase. The microstructures distribution of Au16Pt69Sn15, Au16Pt54Sn30 and Au16Pt42Sn42 alloy are more uniform and the strengths of the alloy are higher than that of Au16Pt30Sn54 and Au16Pt20Sn64 alloy because of the existence of spinodal decomposition phase.

Key words: Au-Pt-Sn system; phase diagram; isothermal section; microstructure; phase equilibrium; spinodal decomposition

Foundation item: Projects (2017YFB0305700) supported by the National Key R&D Program of China; Projects (U1602275, U1602271) supported by the National Natural Science Foundation of China; Projects (2018ZE011, 2018ZE012, 2018ZE022, 2018ZE026) supported by the Major Science and Technology Projects of Yunnan Province, China; Projects (2018FB088, 2017FB144) supported by the Applied Basic Research Foundation of Yunnan Province, China

Received date: 2018-01-16; Accepted date: 2018-05-10

Corresponding author: XIE Ming; Tel: +86-871-68328841; E-mail: powder@ipm.com.cn

(±à¼­  Áú»³ÖÐ)

»ù½ðÏîÄ¿£º¹ú¼ÒÖصãÑз¢¼Æ»®×ÊÖúÏîÄ¿(2017YFB0305700)£»¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð×ÊÖúÏîÄ¿(U1602275£¬U1602271)£»ÔÆÄÏÊ¡ÖØ´ó¿Æ¼¼×¨Ïî(2018ZE011£¬2018ZE012£¬2018ZE022, 2018ZE026)£»ÔÆÄÏÊ¡Ó¦Óûù´¡Ñо¿¼Æ»®×ÊÖúÏîÄ¿(2018FB088£¬2017FB144)

ÊÕ¸åÈÕÆÚ£º2018-01-16£»ÐÞ¶©ÈÕÆÚ£º2018-05-10

ͨÐÅ×÷ÕߣºÐ»  Ã÷£¬½ÌÊÚ£¬²©Ê¿£»µç»°£º0871-68328841£»E-mail£ºpowder@ipm.com.cn

Õª  Òª£º²ÉÓà X ÉäÏßÑÜÉäÒÇ(XRD)ºÍµç×Ó̽ÕëÏÔ΢·ÖÎöÒÇ(EPMA)µÈ·½·¨²â¶¨ÁËAu-Pt-Sn ÈýԪϵ 700 ¡æµÈνØÃæ¡£½á¹û±íÃ÷£ºAu-Pt-Sn Ìåϵ 700 ¡æµÈνØÃæÓÉ3¸öµ¥ÏàÇø¡¢7¸öÁ½ÏàÇøºÍ6¸öÈýÏàÇø×é³É¡£6¸öÈýÏàÇø·Ö±ðΪPt3Sn+FCC-A1+PtSn¡¢PtSn+FCC-A1+Au5Sn¡¢PtSn+Pt3Sn+Au5Sn¡¢Pt3Sn+FCC-A1+Au5Sn¡¢PtSn+Pt2Sn3+LiquidºÍPtSn+FCC-A1+Liquid¡£Au-Pt-SnÌåϵÖдæÔÚAu-PtºÏ½ðµÄµ÷·ù·Ö½â·´Ó¦£¬Ëæ×ÅPtº¬Á¿µÄ¼õÉÙ£¬ºÏ½ðÖе÷·ù·Ö½âÏàÖð½¥Ïûʧ£¬ÔÚAu16Pt30Sn54ºÍAu16Pt20Sn64ºÏ½ðÖÐÍêÈ«Ïûʧ¡£ÓÉÓÚPt-SnºÏ½ðÏàµÄÈÛµã½ÏAu-SnºÏ½ðµÄÏà¸ß£¬ËùÒÔÔÚ700 ¡æµÈνØÃ棬´ó¶¼Ö»´æÔÚPt-SnºÏ½ðÏ࣬¶øAu-SnºÏ½ðÏà´ó¶¼Ö»´æÔÚÓÚÒºÏàÖС£ºÏ½ðAu16Pt69Sn15¡¢Au16Pt54Sn30ºÍAu16Pt42Sn42ÓÉÓÚ´æÔÚµ÷·ù·Ö½âÏ࣬×éÖ¯·Ö²¼½Ï¾ùÔÈ£¬ÆäÇ¿¶ÈÃ÷ÏԱȺϽðAu16Pt30Sn54ºÍAu16Pt20Sn64µÄ¸ß¡£

[1] SHEN Yi-hong, LI Yu-ming, LIU Hai-chao. Base-free aerobic oxidation of glycerol on TiO2-supported bimetallic Au-Pt catalysts[J]. Journal of Energy Chemistry, 2015, 24(5): 669-673.

[2] XU Xiao-ning, REN Yu-ping, LI Chang-fa, LI Song, QIN Gao-wu. Thermodynamic assessment of Au-Pt system[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1432-1436.

[3] LIU Ya-jun, WANG Jiang, DU Yong, SHENG Guang, LONG Zhao-hui, ZHANG Li-jun. Phase boundary migration, Kirkendall marker shift and atomic mobilities in fcc Au-Pt alloys[J]. CALPHAD, 2012, 36: 94-99.

[4] OKAMOTO H, MASSALSKI T. The Au-Pt system[J]. Journal of Phase Equilibria, 1985, 6(1): 46-56.

[5] GROLIER V, SCHMID F R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of Au-Pt and Au-Pt-Sn system[J]. Journal of Electronic Materials, 2008, 37(3): 264-278.

[6] HU Jie-qiong, XIE Ming, ZHANG Ji-ming, LIU Man-men, YANG You-cai, CHEN Yeng-tai. First principles study of Au-Sn intermellic[J]. Acta Physica Sinica, 2013, 62(24): 247102.

[7] ARABI F, THEOLIER L, MARTINEAU D, DELETAGE J Y, MEDINA M, WOIRGARD E. Power electronic assemblies: Thermo-mechanical degradations of gold-tin solder for attaching devices[J]. Microelectronics Reliability, 2016, 64: 409-414.

[8] HUANG M L, YANG Y C, CHEN Y, DONG C. Microstructure and mechanical properties of Sn-rich Au-Sn solders designed using cluster-plus-glue-atom model[J]. Materials Science and Engineering A, 2016, 664: 221-226.

[9] DEBSKI A, GASIOR W, MOSER Z, MAJOR R. Enthalpy of formation of intermetallic phases from the Au-Sn system[J]. Journal of Alloys and Compounds, 2010, 491(1/2): 173-177.

[10] PATRICIA G, CORRADINIA ERMETE ANTOLINI, JOELMA PEREA. Electro-oxidation of ethanol on ternary non-alloyed Pt¨CSn¨CPr/C catalysts[J]. Journal of Power Sources, 2015, 275: 377-383.

[11] LAI Yu-long, HE Song-bo, LUO Sha, BI Wen-jun, LI Xian-ru, SUN Cheng-lin, SESHAN K. Hydrogen peroxide modified Mg-Al-O oxides supported Pt-Sn catalysts for paraffin dehydrogenation[J]. Catalysis Communications, 2015, 69: 39-42.

[12] SHAN Yu-ling, WANG Ting, SUI Zhi-jun, ZHU Yi-an, ZHOU Xing-gui. Hierarchical MgAl2O4 supported Pt-Sn as a highly thermostable catalyst for propane dehydrogenation[J]. Catalysis Communications, 2016, 84: 85-88.

[13] ZHOU Wei, LIU Li-juan, LI Bao-ling, WU Ping, SONG Qing-gong. Structural, elastic and electronic properties of intermetallics in the Pt-Sn system: A density functional investigation[J]. Computational Materials Science, 2009, 46(4): 921-931.

[14] Vincent Grolier, Rainer Schmid-Fetzer. Thermodynamic analysis of the Pt-Sn system[J]. Journal of Alloys and Compounds, 2009, 46(4): 921-931.

[15] WANG Jian-she, XI Jing-yu, ZHANG Lei, ZHANG Jiu-jun, GUO Xun, ZHAO Jian-hong, SONG Cheng-ying, WANG Liu-cheng. Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation[J]. Electrochimica Acta, 2013, 112: 480-485.

[16] ALEXANDRA N T, LAILA O, KJEKSHUS A, KJEKSHUS A OLSEN. The tin-rich part of the Au-Pt-Sn system[J]. Journal of alloys and compounds, 2001, 314(1/2): 92-95.

[17] DONG Hong-qun, VUORINEN V, BROAS M, PAULASTO-KR€OCKEL M. Thermodynamic reassessment of the Au-Pt-Sn system and microstructural evolution of the (AuSn)eut-Pt interconnection[J]. Journal of Alloys and Compounds, 2016, 688: 388-398.