网络首发时间: 2019-10-11 15:16

熔盐氯化法选择性提取废旧荧光粉中稀土元素

耿傲 朱曾丽 华中胜 陈杰双阳 吴博文 何世伟

安徽工业大学冶金工程学院

安徽工业大学冶金工程与资源综合利用安徽省重点实验室

摘 要:

废旧稀土荧光粉的回收利用对我国稀土资源的可持续发展和环境保护具有重要的意义。本文以AlCl3-KCl熔盐为氯化剂,对废旧荧光粉中的稀土元素进行氯化提取。在热力学分析的基础上,考察了氯化焙烧条件和碱熔处理对稀土氯化提取率的影响,并采用X射线衍射仪(XRD)和扫描电子显微镜-X射线能谱仪(SEM-EDS)对反应前后废旧荧光粉的物相组成和微观形貌进行了分析。由于稀土元素在荧光粉中的存在形式不同,其氯化提取率也存在着较大差异。在焙烧温度700℃、焙烧时间3 h、熔盐/废旧荧光粉质量比4:1的条件下,Y和Eu的氯化提取率在96%以上,而Ce和Tb的提取率不到30%。碱熔处理可将铝酸盐结构中的稀土元素转化为氧化物,再进行氯化焙烧时Ce和Tb的提取率得到了显著提高。结果表明,采用熔盐氯化-碱熔-二次氯化的方法可对废旧荧光粉中的稀土元素进行高效选择性提取:4种稀土元素的总氯化提取率达97%以上,而Si,Ca,Al,P等主要杂质元素则不被AlCl3-KCl所氯化。

关键词:

废旧荧光粉;熔盐氯化;铝酸盐;稀土元素;选择性提取;

中图分类号: X705

作者简介:耿傲(1996-),男,安徽滁州人,硕士,研究方向:稀有金属的分离与提取,E-mail:ahutga@126.com;;*华中胜,副教授,电话:0555-2311571,E-mail:huazs83@163.com;

收稿日期:2019-07-03

基金:国家自然科学基金项目(U1703130);安徽省自然科学基金项目(2008085ME170);高校优秀青年人才支持计划项目(gxyq2018012);冶金工程与资源综合利用安徽省重点实验室开放基金项目(SKF19-05;SKF18-01);大学生创新创业训练计划项目(201910360008;201810360159)资助;

Selective Extraction of Rare Earth Elements from Waste Phosphors by Molten Salts Chlorination

Geng Ao Zhu Zengli Hua Zhongsheng Chen Jieshuangyang Wu Bowen He Shiwei

School of Metallurgical Engineering,Anhui University of Technology

Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling,Anhui University of Technology

Abstract:

Waste tricolor phosphors were valuable secondary resources of rare earth elements including Y,Eu,Ce and Tb,and thus the recycling of waste phosphors was of great importance both for the sustainable utilization of rare earth elements and environment protection. Currently,the waste phosphors were mainly recovered by hydrometallurgical technology,during which a large quantity of acids,organic reagents and other chemicals were consumed,discharging massive waste of liquids and residues. Moreover,most of the existing researches were focused on recovery of Y and Eu in the red phosphor which was easily dissolved by acids,while the elements Ce and Tb in green and blue phosphors were ignored due to their highly stable aluminate structures. Therefore,the development of efficient and environmentally friendly technology was urgently required for the comprehensive recovery of waste rare earth phosphors. In the present work,the method of chlorination roasting assisted by alkaline fusion was used to selective extract the rare earth elements from waste phosphors,during which molten AlCl3-KCl and Na2CO3 were selected as agents for the chlorination roasting and alkaline fusion,respectively. The waste phosphors were firstly suffered from chlorination roasting to extract the rare earth elements Y and Eu. The roasting products were then suffered from secondary chlorination after alkaline fusion to extract the elements Ce and Tb. From the thermodynamic analysis,the elements of Y,Eu,Ce and Tb in their oxides could be selectively chlorinated to their chlorides,while the impurity elements such as Si,Al and P could not be converted to chlorides by roasting with AlCl3. Then,the effects of roasting conditions including roasting temperature,holding time and mass ratio of chlorides/waste phosphors on rare earth element extraction efficiencies were further investigated. Since the rare earth elements existed in different crystal structures in waste phosphors,Y and Eu in the red phosphor were easily chlorinated by molten AlCl3-KCl,but the green phosphor and blue phosphor were hardly attacked by the molten chlorides,and therefore there were great differences in their extraction efficiencies. It was indicated that both the extraction efficiencies of Y and Eu were more than 96%,while those of Ce and Tb were lower than 30% by one-step chlorination roasting with the roasting temperature of 700 ℃,holding time of 3 h and chlorides/waste phosphors mass ratio of 4∶1. The phase composition and microstructure of the waste phosphors before and after chlorination roasting were examined by using X-ray diffraction(XRD)and scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDS). The results indicated that the rare earth elements Y and Eu in red phosphor were almost completely extracted out,however the green and blue phosphors,as well as the impurities including Ca5(PO4)3 F0.94 Cl0.1 and SiO2,are still existed in the roasted products. Subsequently,the roasted products were mixed with equivalent mass of Na2 CO3 and roasted at 1000 ℃ for 3 h. The rare earth elements in aluminate green and blue phosphors could be converted into the corresponding oxides by alkaline fusion. Finally,the products after alkaline fusion were processed with chlorination roasting again.The rare earth elements Ce and Tb in the waste phosphors could be readily converted to their chlorides and the extraction efficiencies were significantly improved to 88.51% and 83.06%,respectively,during the secondary chlorination roasting process. Molten salts chlorination assisted by alkaline fusion could be regarded as an effective method for separation and extraction of rare earth elements from waste phosphors. For one-step chlorination,the overall extraction efficiency of Y,Eu,Ce and Tb was 89.15% under the appropriate conditions. However,the extraction efficiency could be enhanced to more than 97% when the waste phosphors were treated via molten salts chlorination followed by alkaline fusion and secondary chlorination,whereas the main impurity elements including Si,Ca,Al and P,could hardly be chlorinated by the molten AlCl3-KCl. The proposed method showed a high selectivity for rare earth elements separation.

Keyword:

waste phosphors; molten salts chlorination; aluminate; rare earth elements; selective extraction;

Received: 2019-07-03

稀土因其独特的物理化学性质 [1,2] ,现已广泛应用于永磁材料、发光材料、储氢材料、催化材料等重要领域 [3] ,成为当今社会发展尖端科技不可或缺的战略资源。我国是稀土资源大国,但由于长期的过度开采,我国稀土资源特别是中、重稀土也面临着枯竭的境地 [4] 。面对这一严峻形势,一方面应科学有序地开采现有稀土矿,建立稀土资源储备制度;另一方面须加强稀土二次资源的回收与综合利用。

废旧荧光粉是最具回收潜力的稀土二次资源 [5,6] 。近年来,我国稀土荧光灯的报废量不断增加,仅2015年一年的报废量就已达到60亿支,产生的废旧稀土荧光粉约1万t [7] 。废旧荧光粉中稀土含量远高于独居石、氟碳铈矿等原矿 [6] ,且稀土元素种类相对单一、不含放射性元素铀与钍,是一种极具开采价值的“城市矿山”。同时,这类固体废弃物若不得到妥善处置,还会造成环境污染。因此,废旧荧光粉中稀土元素的回收,对我国稀土资源的可持续发展和环境保护具有重要的现实意义。目前,废旧荧光粉中稀土元素的回收技术主要包括湿法浸出分离 [8,9,10,11] 、碱焙烧法 [12,13] 、机械活化法 [14] 、直接萃取 [15] 和超临界萃取分离法 [16] 。湿法浸出分离工艺具有操作方便、产物纯度高的优点,是当前工业中处理废旧荧光粉的常用方法。该回收工艺的主要问题在于,酸浸过程中杂质元素Al,Ca等也一同被浸出,加大了后续稀土元素分离的难度;同时还存在着稀土回收率低、二次污染严重等不足 [17] 。寻求稀土元素选择性高效分离技术已成为废旧荧光粉资源化综合回收的必然要求。

氯化法(包括氯化焙烧和氯化离析)是分离、提取低品位复杂矿及二次资源中有价金属的常用方法 [18,19,20,21,22] ,具有金属提取率高、选择性强的特点。迄今为止,有关氯化法提取废旧荧光粉中稀土元素的研究鲜有报道。根据废旧荧光粉的化学组成特征,本文选用Al Cl3作为氯化剂对废粉进行氯化焙烧,使其中的稀土元素被熔融Al Cl3氯化为水溶性氯化物,Al,Si等杂质不与氯化剂反应而仍以氧化物形式存在,然后通过水溶处理以实现稀土元素的选择性分离和提取。考虑到Al Cl3在熔融状态下极易挥发,可向其中加入等摩尔量的KCl形成Al Cl3-KCl混合熔盐,以降低氯化剂在高温下的挥发性,提高氯化剂的氯化效果 [22] 。针对废旧荧光粉的氯化焙烧过程,本文首先对稀土元素选择性氯化的反应机制进行研究,然后考察焙烧温度、焙烧时间、物料比、碱熔处理对稀土氯化提取率的影响,结合焙烧产物分析,探索选择性氯化法提取废旧荧光粉中稀土元素较为适宜的技术条件。

1实验

1.1原料与试剂

实验所用废旧荧光粉由江西省某稀土公司提供,其化学成分见表1。由表可知:废旧荧光粉中Y的含量(以氧化物计)高达18.54%,而4种稀土元素的总含量则在23%以上。由图1可以看出,除稀土三基色红粉((Y0.95Eu0.05)2O3)、绿粉(Ce0.67Tb0.33Mg Al11O19)和蓝粉(Ba0.9Eu0.1Mg2Al16O27)外,废旧荧光粉中还含有一定量的Ca5(PO4)3F0.94Cl0.1和Si O2等杂质。目前,灯用荧光粉主要为稀土三基色荧光粉,少部分为卤磷酸钙荧光粉。Ca5(PO4)3F0.94Cl0.1即为回收过程中混入的卤磷酸钙白色荧光粉,而Si O2则来源于碎石英灯管。三氯化铝(Al Cl3)、氯化钾(KCl)、碳酸钠(Na2CO3)购自上海阿拉丁生化科技股份有限公司,均为分析纯试剂。

1.2实验方法

1.2.1氯化焙烧

按照摩尔比1∶1称取适量干燥后的AlCl3和KCl粉末,向其中加入一定量废旧荧光粉(或经碱熔处理后的废旧荧光粉),将上述三种粉末混合均匀后置于刚玉坩埚中。然后,将坩埚放入高温炉中,在Ar气氛中加热至设定温度,并于此温度恒温一定时间。氯化焙烧结束后,待样品冷却至室温,取出焙砂进行水浸,过滤分离出的水浸渣用于分析。

表1 废旧荧光粉的化学组成  下载原图

Table 1 Chemical composition of original waste phos-phors(%,mass fraction)

图1 废旧荧光粉的XRD图谱

Fig.1 XRD pattern of original waste phosphors

1.2.2碱熔焙烧

按质量比1∶1称取适量Na2CO3和氯化焙烧后的水浸渣于研钵中研匀,将所得混合物加入至刚玉坩埚中。然后,将坩埚放入马弗炉中,空气气氛下于1000℃焙烧3 h。碱熔结束后,取出焙烧产物,用去离子水对其进行浸出,并水洗数次以去除其中水溶性钠盐。最后,进行抽滤,分离出浸出渣,烘干后用于二次氯化焙烧。

1.3样品分析

氯化焙烧所得焙砂用去离子水进行浸出,使用日本岛津ICPS-7510 PLUS型电感耦合等离子体原子发射光谱仪(ICP-AES)测定浸出液中稀土离子浓度;利用日本电子JSM-6490LV型扫描电子显微镜和X射线能谱仪(SEM/EDS)分析固态样品的微观形貌和元素组成;采用德国布鲁克X射线衍射仪(XRD)鉴定样品的物相组成。废旧荧光粉中稀土元素的氯化提取率(αi)计算方法如下:

式中,i为Y,Eu,Ce或Tb;ci为浸出液中稀土离子的浓度(g·L-1);V为浸出液体积(L);wi为废旧荧光粉中稀土离子的质量分数(%);m为废旧荧光粉质量(g)。

2结果与讨论

2.1热力学分析

常用固体的氯化剂有Ca Cl2,Na Cl,Mg Cl2,AlCl3等,本文选用Al Cl3作为分离、提取废旧荧光粉中稀土元素的氯化剂。这是因为熔融状态下,Al Cl3能释放出氯自由基,对物料有很强的氯化作用 [23] 。由于缺少铝酸盐三基色荧光粉的热力学数据,考虑到Y,Eu,Ce,Tb这4种稀土元素以及Ca,Al,Si,P等主要杂质元素在废旧荧光粉中的存在形式均为氧化态,因此用这些元素氧化物(MxOy)的氯化来研究废旧荧光粉的氯化反应行为,推断各组分发生氯化反应可能性和趋势。各组分的氯化反应可用式(2)表示:

废旧荧光粉主要组分与Al Cl3反应的标准Gibbs自由能随温度的变化关系如图2所示。可以看出:Y,Eu,Ce,Tb这4种稀土元素的氧化物与Al Cl3反应的标准Gibbs自由能均为负值,采用Al Cl3对废旧荧光粉中的稀土元素进行氯化提取在热力学上是可行的。虽然生成气态Si Cl4(g)的氯化反应可能会发生,但其热力学推动力(ΔG°)较弱;而AlCl3氯化P,Si的氧化物分别形成气态PCl5(g)和液态Si Cl4(l)的反应标准Gibbs自由能均为正值,即标准状态下废料中的P与Si等杂质难以被Al Cl3所氯化。此外,作为废料中的主要杂质组分,Al2O3在氯化焙烧中也是不与Al Cl3反应的。因此,Al Cl3对废旧荧光粉中稀土元素的氯化提取具有选择性。

2.2焙烧条件对稀土氯化提取率的影响

2.2.1焙烧温度的影响

当焙烧时间为3 h、熔盐/废旧荧光粉质量比为4∶1时,焙烧温度对废旧荧光粉中稀土氯化提取率的影响如图3所示。可以看出:随着反应温度的升高,4种稀土元素的提取率整体上呈上升趋势。在实验温度下,荧光粉在熔盐中以固态形式存在,与Al Cl3-KCl熔盐间的反应属于固-液反应,反应速率常数与温度之间的关系符合阿罗尼乌斯公式:

图2 不同温度下荧光粉废料中主要组元与Al Cl3反应的标准Gibbs自由能

Fig.2 Standard Gibbs free energies variation of reactions be-tween component in waste phosphors and Al Cl3at 300~900℃

式中,A为指前因子(min-1);T为反应温度(K);Ea为表观活化能(J·mol-1);R为摩尔气体常数(J·mol-1·K-1)。

因此,提高焙烧温度能加速废旧荧光粉与熔盐的反应。此外,提高反应体系的温度,有利于降低熔盐的粘度、加快反应传质过程,从而促进氯化反应的进行。然而,不同稀土元素间的氯化提取率的差别显著。600~900℃间,Y和Eu的提取率很高,尤其是Y,其氯化提取率在99%以上;相比于Y和Eu,Ce与Tb的提取率较低,800℃时才接近30%。这可能是因为Y和Eu主要是以简单氧化物(Y0.95Eu0.05)2O3的形式存在于红粉中,少量Eu存在于尖晶石结构的蓝粉Ba0.9Eu0.1Mg2Al16O27中,而Ce和Tb则均以尖晶石结构存在于铝酸盐绿粉Ce0.67Tb0.33Mg Al11O19中。在实验温度范围内,红粉中的稀土Y,Eu与Al Cl3反应均比较彻底,所以提高温度对稀土提取率没有显著影响。但在蓝粉和绿粉的尖晶石结构中,金属原子与O之间均以较强的离子键结合,且静电键强度相等,性质十分稳定 [24] ,即便在较高的温度下也难以被Al Cl3所氯化。综合考虑稀土提取率和能耗两方面因素,较适宜的氯化焙烧温度为700℃。

2.2.2焙烧时间的影响

在焙烧温度700℃、熔盐/废旧荧光粉质量比4∶1的条件下,考察了焙烧时间为3,6,9与12 h时的稀土氯化提取率,结果如图4所示。从图4中可以看出:(1)Y与Eu的氯化提取率仍然很高,分别在99%,96%左右,而Ce与Tb的提取率依旧保持在20%~30%这一较低水平;(2)稀土元素的氯化提取率与焙烧时间呈近似水平直线关系,即焙烧时间对Y,Eu,Ce,Tb这4种稀土元素的氯化提取率无显著影响,表明废旧荧光粉中稀土元素与Al Cl3的反应在较短的时间就能达到平衡。这是因为稀土荧光粉的粒度很小,与熔盐接触反应的比表面积较大,有利于反应的快速进行。

图3 焙烧温度对稀土元素氯化提取率的影响

Fig.3 Effect of chlorination roasting temperature on rare earth elements extraction rate

由图2可知,热力学上Y2O3,Eu2O3与Al Cl3间的反应在较低的温度下就能发生。在熔融Al Cl3-KCl中,上述反应的传质过程则会显著加快,致使氯化反应在较短的时间内即可完成。至于绿粉中的Ce和Tb,由于其尖晶石结构在700℃时难以被Al Cl3破坏,即便将焙烧时间延长至12 h,反应仍较为微弱。考虑到反应时间越长,生成的稀土氯化物与Al Cl3形成气态配合物REAl3Cl12的量越多,由此带来的稀土挥发损失也就越大 [25] ,因此3 h的氯化焙烧时间已足够。

2.2.3反应物料比的影响

分别称取20,30,40,60,80 g等摩尔比的Al Cl3-KCl混合氯化物与10 g废旧荧光粉混匀后于700℃下焙烧3 h,4种稀土的氯化提取率如图5所示。可以看出,Al Cl3-KCl熔盐/废旧荧光粉的质量比对稀土元素提取率的影响不太显著。根据废旧荧光粉中Y,Ce,Eu,Tb这4种稀土元素的含量,完全氯化10 g废旧荧光粉中的稀土元素所需Al Cl3的总质量约为2.6 g。本文所用熔盐中Al Cl3与KCl的摩尔比为1∶1,显然,即使选取最小的反应物物料比(熔盐/荧光粉的质量比为2∶1),熔盐中所含Al Cl3的量也远高于完全氯化稀土所需的Al Cl3量。故继续增加熔盐/荧光粉质量比,对稀土的氯化提取率无显著作用。废旧荧光粉中稀土元素的氯化过程为固-液反应,为了促进反应的进行,进而实现稀土元素最大程度的氯化物提取,应确保废旧荧光粉能够完全被熔盐所浸没。因此,焙烧过程中熔盐氯化剂应适当过量,较为适宜的熔盐/荧光粉质量比为4∶1。

图4 焙烧时间对稀土元素氯化提取率的影响

Fig.4 Effect of chlorination roasting time on rare earth ele-ments extraction rate

2.3焙烧前后产物分析

图6为焙烧前废旧荧光粉的微观形貌与微区成分分析结果。从图6(a)可以看出,荧光粉废料的粒度组成不均匀,大致可以分为两类:粒径在10μm左右的大颗粒与粒径在2~5μm间的小颗粒。由图6(a)中点A,B,C,D的元素分析可知,稀土元素主要集中在小颗粒中,而大颗粒物质则可能为杂质。这是因为荧光粉在使用中是以细小的颗粒均匀涂覆在石英灯管上,因而回收得到的废旧荧光粉的粒度也较小;而荧光灯的拆解以及荧光粉的分离过程会带入一些杂质(如石英管碎块),它们常以较大的颗粒混在废旧荧光粉中。图6(b~e)的元素分析结果表明,Y,Eu,Ce,Tb这4种稀土元素与Si,Al,Ca,P等杂质元素均以氧化态存在于废旧荧光粉中。此外,通过对比各元素的含量可以发现,4种稀土元素主要存在于红粉(Y0.95Eu0.05)2O3与绿粉Ce0.67Tb0.33Mg Al11O19中,Si与Ca,P等杂质则分别存在于卤磷酸盐白色荧光粉Ca5(PO4)3F0.94Cl0.1和杂质Si O2中。这与图1中的分析结果一致。需要说明的是,由于荧光灯中蓝粉(Ba0.9Eu0.1Mg2Al16O27)的用量较低,仅占稀土三基色荧光粉总量的15%左右 [26] ,因此在图6(a)中难以发现蓝粉颗粒。

图5 氯化物/废旧荧光粉质量比对稀土元素氯化提取率的影响

Fig.5 Effect of mass ratio of chlorides/waste phosphors on rare earth elements extraction rate

图6 废旧荧光粉的SEM图片及EDS分析

Fig.6 SEM image(a)and EDS analyses(b~e)of original waste phosphors

废旧荧光粉氯化焙烧后水浸渣的SEM图片与EDS分析如图7所示。对比可以看出,氯化焙烧后残余废料中粒径在2~5μm间的小颗粒物质变少。同时,对图中的小颗粒物质与大颗粒物质进行元素分析(如图7(b~e)所示)发现:(1)小颗粒物质变少,而大颗粒物质增多;(2)含Y和Eu的小颗粒物质消失,同时出现了Al,O原子比接近2∶3的小颗粒物质(见图7(e));(3)含Ce和Tb,Ca和P的小颗粒物质以及含Si的大颗粒物质依然存在,并且其元素组成相比于氯化焙烧前没有太大变化。上述结果表明:红粉中的Y与Eu能被Al Cl3氯化,而铝酸盐绿粉、卤磷酸盐白色荧光粉与杂质Si O2则难以与熔盐反应而留在残余废料中。

不同温度下废旧荧光粉氯化焙烧后水浸出渣的XRD图谱如图8所示。结果表明:氯化焙烧后的水浸渣主要由Si O2,Ca5(PO4)3F0.94Cl0.1,Ce0.67Tb0.33Mg Al11O19,Ba0.9Eu0.1Mg2Al16O27与Al2O3这五种物相组成。前4种为废旧荧光粉中所含有的物质,因不与熔盐反应而保留在反应后残渣中。对比图1发现,红粉(Y0.95Eu0.05)2O3的衍射峰消失,同时出现了Al2O3的衍射峰。这进一步证实:荧光粉中的Y与Eu能与熔盐中的Al Cl3发生反应,并生成Al2O3和水溶性的稀土氯化物。此外,不同焙烧温度下所得焙砂的物相组成相同,各衍射峰的相对强度无明显变化。这也很好地论证了前述实验结果,即反应温度对稀土的氯化提取率没有显著影响,因而仅通过提高焙烧温度无法对铝酸盐绿粉中的Ce与Tb进行氯化提取。

2.4氯化反应行为分析

在红粉(Y0.95Eu0.05)2O3中,Y和Eu均是以其氧化物的形式存在。因此,废旧荧光粉中的红粉能完全被Al Cl3氯化,氯化反应可用下式表示:

虽然Ce,Tb,Eu的氧化物能与Al Cl3反应(见图2),但绿粉中的Ce和Tb以及蓝粉中的Eu存在于铝酸盐而非其简单氧化物中。铝酸盐绿粉与蓝粉均为尖晶石结构,性质非常稳定,难以被Al Cl3氯化,因而Ce,Tb的氯化提取率很低。同样,存在于铝酸盐中的Mg以及卤磷酸盐白色荧光粉Ca5(PO4)3F0.94Cl0.1中的Ca,P也难以被Al Cl3氯化。此外,作为废旧稀土荧光粉的主要杂质组分,Si O2在氯化焙烧过程中未与熔盐发生反应,这与图2中的热力学分析结果基本一致。

图7 废旧荧光粉氯化焙烧后水浸渣的SEM图片及EDS分析

Fig.7 SEM image(a)and EDS analyses(b~e)of leaching residue of waste phosphors after chlorination roasting

图8 不同温度下废旧荧光粉氯化焙烧后水浸渣的XRD图谱

Fig.8 XRD patterns of waste phosphors roasted at different temperature after leaching in water

稀土红粉与绿粉、蓝粉的结构不同,在焙烧过程中的氯化反应行为亦不同,正因如此,Y,Eu,Ce,Tb这4种稀土元素的氯化提取率有较大差异:最佳条件下,Y和Eu的氯化提取率均在96%以上,而Ce和Tb的提取率不到30%。虽然铝酸盐绿粉和蓝粉中的稀土元素难以被Al Cl3所氯化,但废旧荧光粉中红粉的含量最高(Y和Eu约占稀土总含量的87%),而红粉能被Al Cl3完全氯化,计算结果表明:采用一步熔盐氯化处理,稀土元素的总提取率也能达到89.15%。更为重要的是,废旧荧光粉中的Si,Al,Ca,P等杂质元素在氯化焙烧时不与熔盐反应。因此,Al Cl3-KCl熔盐氯化法提取废旧荧光粉中的稀土元素表现出较强的选择性,从而降低了杂质对后续稀土离子分离和提取过程的干扰,提高了稀土的回收效率和产物的纯度。

2.5碱熔对Ce,Tb氯化提取的影响

碱熔焙烧是分离、提取复杂矿中有价金属的一种常用预处理手段。为了提高Ce,Tb的氯化提取率,本文利用Na2CO3在1000℃下对氯化焙烧后的水浸渣进行了碱熔处理。碱熔焙烧过程中,Na2CO3可使水浸渣中残余的绿粉和蓝粉发生如下分解反应 [13,27,28] :

从而将绿粉和蓝粉中的稀土元素转化为能与Al Cl3反应的氧化物。碱熔焙烧产物水洗除去其中的可溶性物质后,再于700℃的Al Cl3-KCl熔盐中进行二次氯化焙烧,Ce,Tb的二次氯化提取率分别提高到88.51%和84.06%(表2)。由表2可以看出,采用熔盐氯化-碱熔焙烧-二次熔盐氯化的处理工艺,可对废旧荧光粉中Y,Ce,Eu,Tb进行高效选择性分离和提取,4种稀土元素总氯化提取率可达97%以上。

表2 熔盐氯化与碱熔焙烧的工艺条件及稀土元素的提取率  下载原图

Table 2 Technological conditions and rare earth extraction rate of chlorination and alkaline roasting

3结论

以熔融Al Cl3-KCl为氯化剂(其中KCl用于降低熔盐的挥发性),对废旧荧光粉中的稀土元素进行氯化提取实验研究,得到结论如下:

1.废旧荧光粉中的红粉易被Al Cl3氯化,而尖晶石结构的绿粉和蓝粉则难与Al Cl3反应。在氯化焙烧温度为700℃、焙烧时间3 h、熔盐/废旧荧光粉质量比4∶1的条件下,Y和Eu的氯化提取率分别为99.03%,96.44%,而Ce和Tb的提取率均不到30%。废旧荧光粉经一次熔盐氯化焙烧后,4种稀土元素的总提取率为89.15%。

2.氯化焙烧分离出Y和Eu后的焙砂,经1000℃的Na2CO3碱熔处理后进行二次氯化焙烧,Ce和Tb的氯化提取率分别达到了88.51%,83.06%。采用熔盐氯化-碱熔焙烧-二次氯化的处理工艺,废旧荧光粉中稀土元素总氯化提取率可提高到97%以上。

3.氯化焙烧过程中,Si O2与卤磷酸盐白色荧光粉Ca5(PO4)3F0.94Cl0.1等杂质组分不与Al Cl3反应,有利于后续稀土元素的高效分离和回收。这表明AlCl3-KCl熔盐氯化法提取废旧荧光粉中的稀土元素具有较强的选择性。

参考文献

[1] Wu L F,Li T,Zhao H Y,Sun M S,Fan J.Influence of Ce on corrosion resistance of 2A12 aluminum alloy in harsh marine atmospheric[J].Chinese Journal of Rare Metals,2019,43(12):1269.(吴立凡,李涛,赵慧颖,孙明双,范静.稀土元素Ce对2A12铝合金在苛刻环境中腐蚀性能的影响[J].稀有金属,2019,43(12):1269.)

[2] Ma M,Ye W,Yan X D,Zhang X,Di C Q,Zhu B H.Effect of trace rare earth Ce on microstructure and corrosion resistance of pure aluminum[J].Chinese Journal of Rare Metals,2020,44(1):56.(马敏,叶蔚,闫晓东,张旭,狄崇庆,朱宝宏.微量稀土铈对纯铝组织及耐蚀性能的影响[J].稀有金属,2020,44(1):56.)

[3] Hua Z S,Liu H,Wang J,He J W,Xiao S J,Xiao Y P,Yang Y X.Electrochemical behavior of neodymium and formation of Mg-Nd alloys in molten chlorides[J].ACSSustainable Chemistry&Engineering,2017,5(9):8089.

[4] Guo X B,Yang Y,Li J,Xiao W G,Wang M.Mining technology of low grade ion-type rare earth resources[J].Nonferrous Metals (Mine Section),2016,68(6):16.(郭小斌,杨勇,李健,肖文刚,王明.低品位离子型稀土资源开采技术研究[J].有色金属(矿山部分),2016,68(6):16.)

[5] Li H X,Wang S,Li C.Recycling and life cycle analysis of rare earth elements[J].Chinese Journal of Rare Metals,2016,40(9):945.(李宏煦,王帅,李超.稀土元素回收技术及其生命周期循环分析[J].稀有金属,2016,40(9):945.)

[6] Binnemans K,Jones P T,Blanpain B,Van Gerven T,Yang Y X,Walton A,Buchert M.Recycling of rare earths:a critical review[J].Journal of Cleaner Production,2013,51:1.

[7] Chen L J,Li Z L,Gong A,Tian L,Xu Z F.Research progress of rare earth recovery from rare earth waste[J].Journal of the Chinese Society of Rare Earths,2019,37(11):259.(陈丽杰,李子良,龚傲,田磊,徐志峰.从稀土废料中回收稀土的研究进展[J].中国稀土学报,2019,37(11):259.)

[8] Rabah M A.Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps[J].Waste Management,2008,28(2):318.

[9] Zhang S G,Yang M,Liu H,Pan D A,Tian J J.Recovery of waste rare earth fluorescent powders by two steps acid leaching[J].Rare Metals,2013,32(6):609.

[10] Liao C F,Zhong L Q,Zeng Y L,Zhu S Q,Li Z Y.Potential-pH diagram during acid leaching process of waste phosphor[J].Chinese Journal of Rare Metals,2019,43(2):179.(廖春发,钟立钦,曾颜亮,朱尚萍,黎振源.废旧荧光粉中稀土元素浸出的电位-pH图[J].稀有金属,2019,43(2):179.)

[11] Yang F,Kubota F,Baba Y,Kamiya N,Goto M.Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system[J].Journal of Hazardous Materials,2013,254-255:79.

[12] Zhang Z X,Wang R X,Xiong J C,Wen G Y,Liao G,Xie B Y.Effect of alkaline fusion pretreatment on extraction rate of rare earth from waste rare earth fluorescent powder[J].Nonferrous Metals Science and Engineering,2016,7(6):129.(张兆雪,王瑞祥,熊家春,温功玉,廖根,谢博毅.碱熔预处理对废旧稀土荧光粉中稀土提取的影响[J].有色金属科学与工程,2016,7(6):129.)

[13] Zhang S G,Liu H,Pan D A,Tian J J,Liu Y F,Volinsky A A.Complete recovery of Eu from BaMgAl10O17:Eu2+by alkaline fusion and its mechanism[J].RSC Advances,2015,5(2):1113.

[14] Yuan W Y,Meng W,Wang X Y,Chen Q,Wang J W.Rare earth metals recovery from scrap fluorescent powder by mechanical activation[J].Journal of Shanghai Second Polytechnic University,2015,32(1):1.(苑文仪,孟雯,王晓岩,陈钦,王景伟.机械活化强化废弃荧光粉中稀土金属的回收[J].上海第二工业大学学报,2015,32(1):1.)

[15] Otsuki A,Mei G J,Jiang Y R,Matsuda M,Shibayama A,Sadaki J,Fujita T.Solid-solid separation of fluorescent powders by liquid-liquid extraction using aqueous and organic phases[J].Resources Processing,2006,53(3):121.

[16] Shimizu R,Sawada K,Enokida Y,Yamamoto I.Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps[J].Journal of Supercritical Fluids,2005,33(3):235.

[17] Liao C F,Zeng Y L,Jiao Y F.The latest development of rare earth recovery form waste rare earth phosphors[J].Rare Metals and Cemented Carbides,2013,41(6):7.(廖春发,曾颜亮,焦芸芬.从废旧稀土荧光粉中回收稀土的研究现状[J].稀有金属与硬质合金,2013,41(6):7.)

[18] Jiang P G,Wu P F,Wang Z B,Yan Y B,Jing Q X.Research progress of chloridizing volatilization[J].Nonferrous Metals Science and Engineering,2016,7(6):43.(姜平国,吴朋飞,汪正兵,闫永播,靖青秀.氯化挥发的研究进展[J].有色金属科学与工程,2016,7(6):43.)

[19] Li J H,Li Y Y,Gao Y,Zhang Y F,Chen Z F.Chlorination roasting of laterite using salt chloride[J].International Journal of Mineral Processing,2016,148:23.

[20] Gong D D,Zhou K G,Chen W,Peng C H,Li J J.Treatment of tungsten ore by MgCl2roasting-NaOH leaching process[J].Chinese Journal of Rare Metals,2020,44(1):72.(龚丹丹,周康根,陈伟,彭长宏,李俊杰.氯化镁焙烧-碱浸工艺处理钨矿研究[J].稀有金属,2020,44(1):72.)

[21] Chen L J,Huang L Q,Yuan L C,Tian L.Kinetic studies of rubidium extraction from muscovite using chlorination roasting-water leaching process[J].Chinese Journal of Engineering,2018,40(7):808.(陈丽杰,黄林青,袁露成,田磊.白云母伴生铷矿氯化焙烧-水浸法提铷的动力学研究[J].工程科学学报,2018,40(7):808.)

[22] Hua Z S,Wang J,Wang L,Zhao Z,Li X L,Xiao Y P,Yang Y X.Selective extraction of rare earth elements from NdFeB scrap by molten chlorides[J].ACS Sustainable Chemistry&Engineering,2014,2(11):2536.

[23] Abbasalizadeh A,Seetharaman S,Teng L,Sridhar S,Grinder O,Lzumi Y,Barati M.Highlights of the salt extraction process[J].Journal of the Minerals,Metals&Materials Society,2013,65(11):1552.

[24] Jiang M F,Sun L F,Yu J K.The development and application of magnesia-alumina spinel refractories[J].Industrial Heating,2005,34(2):56.(姜茂发,孙丽枫,于景坤.镁铝尖晶石质耐火材料的开发与应用[J].工业加热,2005,34(2):56.)

[25] Yu X L,Wang Z C,Wang Y,Dong D Q,Liu J.Extraction of rare earths from mixed bastnaesite-monazite concentrate by carbochlorination reaction with AlCl3as defluorinating agent[J].The Chinese Journal of Process Engineering,2008,8(2):258.(于秀兰,王之昌,王勇,董德千,刘嘉.采用AlCl3脱氟-碳热氯化法从混合稀土精矿中提取稀土[J].过程工程学报,2008,8(2):258.)

[26] Wu Y F,Yin X F,Zhang Q J,Wang W,Mu X Z.The recycling of rare earths from waste tricolor phosphors in fluorescent lamps:a review of processes and technologies[J].Resources Conservation and Recycling,2014,88:21.

[27] Liu Y F,Zhang S G,Liu B,Shen H L.An alkaline fusion mechanism for aluminate rare earth phosphor:cation-oxoanion synergies theory[J].Rare Metals,2019,38(4):299.

[28] Hua Z S,Geng A,Tang Z T,Zhao Z,Liu H,Yao Y L,Yang Y X.Decomposition behavior and reaction mechanism of Ce0.67Tb0.33MgAl11O19during Na2CO3assisted roasting:toward efficient recycling of Ce and Tb from waste phosphor[J].Journal of Environmental Management,2019,249:109383.

[1] Wu L F,Li T,Zhao H Y,Sun M S,Fan J.Influence of Ce on corrosion resistance of 2A12 aluminum alloy in harsh marine atmospheric[J].Chinese Journal of Rare Metals,2019,43(12):1269.(吴立凡,李涛,赵慧颖,孙明双,范静.稀土元素Ce对2A12铝合金在苛刻环境中腐蚀性能的影响[J].稀有金属,2019,43(12):1269.)

[2] Ma M,Ye W,Yan X D,Zhang X,Di C Q,Zhu B H.Effect of trace rare earth Ce on microstructure and corrosion resistance of pure aluminum[J].Chinese Journal of Rare Metals,2020,44(1):56.(马敏,叶蔚,闫晓东,张旭,狄崇庆,朱宝宏.微量稀土铈对纯铝组织及耐蚀性能的影响[J].稀有金属,2020,44(1):56.)

[3] Hua Z S,Liu H,Wang J,He J W,Xiao S J,Xiao Y P,Yang Y X.Electrochemical behavior of neodymium and formation of Mg-Nd alloys in molten chlorides[J].ACSSustainable Chemistry&Engineering,2017,5(9):8089.

[4] Guo X B,Yang Y,Li J,Xiao W G,Wang M.Mining technology of low grade ion-type rare earth resources[J].Nonferrous Metals (Mine Section),2016,68(6):16.(郭小斌,杨勇,李健,肖文刚,王明.低品位离子型稀土资源开采技术研究[J].有色金属(矿山部分),2016,68(6):16.)

[5] Li H X,Wang S,Li C.Recycling and life cycle analysis of rare earth elements[J].Chinese Journal of Rare Metals,2016,40(9):945.(李宏煦,王帅,李超.稀土元素回收技术及其生命周期循环分析[J].稀有金属,2016,40(9):945.)

[6] Binnemans K,Jones P T,Blanpain B,Van Gerven T,Yang Y X,Walton A,Buchert M.Recycling of rare earths:a critical review[J].Journal of Cleaner Production,2013,51:1.

[7] Chen L J,Li Z L,Gong A,Tian L,Xu Z F.Research progress of rare earth recovery from rare earth waste[J].Journal of the Chinese Society of Rare Earths,2019,37(11):259.(陈丽杰,李子良,龚傲,田磊,徐志峰.从稀土废料中回收稀土的研究进展[J].中国稀土学报,2019,37(11):259.)

[8] Rabah M A.Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps[J].Waste Management,2008,28(2):318.

[9] Zhang S G,Yang M,Liu H,Pan D A,Tian J J.Recovery of waste rare earth fluorescent powders by two steps acid leaching[J].Rare Metals,2013,32(6):609.

[10] Liao C F,Zhong L Q,Zeng Y L,Zhu S Q,Li Z Y.Potential-pH diagram during acid leaching process of waste phosphor[J].Chinese Journal of Rare Metals,2019,43(2):179.(廖春发,钟立钦,曾颜亮,朱尚萍,黎振源.废旧荧光粉中稀土元素浸出的电位-pH图[J].稀有金属,2019,43(2):179.)

[11] Yang F,Kubota F,Baba Y,Kamiya N,Goto M.Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system[J].Journal of Hazardous Materials,2013,254-255:79.

[12] Zhang Z X,Wang R X,Xiong J C,Wen G Y,Liao G,Xie B Y.Effect of alkaline fusion pretreatment on extraction rate of rare earth from waste rare earth fluorescent powder[J].Nonferrous Metals Science and Engineering,2016,7(6):129.(张兆雪,王瑞祥,熊家春,温功玉,廖根,谢博毅.碱熔预处理对废旧稀土荧光粉中稀土提取的影响[J].有色金属科学与工程,2016,7(6):129.)

[13] Zhang S G,Liu H,Pan D A,Tian J J,Liu Y F,Volinsky A A.Complete recovery of Eu from BaMgAl10O17:Eu2+by alkaline fusion and its mechanism[J].RSC Advances,2015,5(2):1113.

[14] Yuan W Y,Meng W,Wang X Y,Chen Q,Wang J W.Rare earth metals recovery from scrap fluorescent powder by mechanical activation[J].Journal of Shanghai Second Polytechnic University,2015,32(1):1.(苑文仪,孟雯,王晓岩,陈钦,王景伟.机械活化强化废弃荧光粉中稀土金属的回收[J].上海第二工业大学学报,2015,32(1):1.)

[15] Otsuki A,Mei G J,Jiang Y R,Matsuda M,Shibayama A,Sadaki J,Fujita T.Solid-solid separation of fluorescent powders by liquid-liquid extraction using aqueous and organic phases[J].Resources Processing,2006,53(3):121.

[16] Shimizu R,Sawada K,Enokida Y,Yamamoto I.Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps[J].Journal of Supercritical Fluids,2005,33(3):235.

[17] Liao C F,Zeng Y L,Jiao Y F.The latest development of rare earth recovery form waste rare earth phosphors[J].Rare Metals and Cemented Carbides,2013,41(6):7.(廖春发,曾颜亮,焦芸芬.从废旧稀土荧光粉中回收稀土的研究现状[J].稀有金属与硬质合金,2013,41(6):7.)

[18] Jiang P G,Wu P F,Wang Z B,Yan Y B,Jing Q X.Research progress of chloridizing volatilization[J].Nonferrous Metals Science and Engineering,2016,7(6):43.(姜平国,吴朋飞,汪正兵,闫永播,靖青秀.氯化挥发的研究进展[J].有色金属科学与工程,2016,7(6):43.)

[19] Li J H,Li Y Y,Gao Y,Zhang Y F,Chen Z F.Chlorination roasting of laterite using salt chloride[J].International Journal of Mineral Processing,2016,148:23.

[20] Gong D D,Zhou K G,Chen W,Peng C H,Li J J.Treatment of tungsten ore by MgCl2roasting-NaOH leaching process[J].Chinese Journal of Rare Metals,2020,44(1):72.(龚丹丹,周康根,陈伟,彭长宏,李俊杰.氯化镁焙烧-碱浸工艺处理钨矿研究[J].稀有金属,2020,44(1):72.)

[21] Chen L J,Huang L Q,Yuan L C,Tian L.Kinetic studies of rubidium extraction from muscovite using chlorination roasting-water leaching process[J].Chinese Journal of Engineering,2018,40(7):808.(陈丽杰,黄林青,袁露成,田磊.白云母伴生铷矿氯化焙烧-水浸法提铷的动力学研究[J].工程科学学报,2018,40(7):808.)

[22] Hua Z S,Wang J,Wang L,Zhao Z,Li X L,Xiao Y P,Yang Y X.Selective extraction of rare earth elements from NdFeB scrap by molten chlorides[J].ACS Sustainable Chemistry&Engineering,2014,2(11):2536.

[23] Abbasalizadeh A,Seetharaman S,Teng L,Sridhar S,Grinder O,Lzumi Y,Barati M.Highlights of the salt extraction process[J].Journal of the Minerals,Metals&Materials Society,2013,65(11):1552.

[24] Jiang M F,Sun L F,Yu J K.The development and application of magnesia-alumina spinel refractories[J].Industrial Heating,2005,34(2):56.(姜茂发,孙丽枫,于景坤.镁铝尖晶石质耐火材料的开发与应用[J].工业加热,2005,34(2):56.)

[25] Yu X L,Wang Z C,Wang Y,Dong D Q,Liu J.Extraction of rare earths from mixed bastnaesite-monazite concentrate by carbochlorination reaction with AlCl3as defluorinating agent[J].The Chinese Journal of Process Engineering,2008,8(2):258.(于秀兰,王之昌,王勇,董德千,刘嘉.采用AlCl3脱氟-碳热氯化法从混合稀土精矿中提取稀土[J].过程工程学报,2008,8(2):258.)

[26] Wu Y F,Yin X F,Zhang Q J,Wang W,Mu X Z.The recycling of rare earths from waste tricolor phosphors in fluorescent lamps:a review of processes and technologies[J].Resources Conservation and Recycling,2014,88:21.

[27] Liu Y F,Zhang S G,Liu B,Shen H L.An alkaline fusion mechanism for aluminate rare earth phosphor:cation-oxoanion synergies theory[J].Rare Metals,2019,38(4):299.

[28] Hua Z S,Geng A,Tang Z T,Zhao Z,Liu H,Yao Y L,Yang Y X.Decomposition behavior and reaction mechanism of Ce0.67Tb0.33MgAl11O19during Na2CO3assisted roasting:toward efficient recycling of Ce and Tb from waste phosphor[J].Journal of Environmental Management,2019,249:109383.