Removal of Methyl Orange from Aqueous Solution by Mineral-based Porous Granulated Material
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第1期
论文作者:王恩文 ZHANG Shichun HUANG Teng ZHONG Lele
文章页码:185 - 192
摘 要:Sodium bentonite, graphite, light calcium carbonate and diatomite were used as parent minerals for the mineral-based porous granulated material(MPGM) which was tested for the removal of methyl orange(MO), a cationic dye, from aqueous solution. The adsorption capacity was evaluated under the conditions of varied initial p H, adsorbent dosage, dye concentration, temperature, reaction time, and static regeneration. Experimental results showed that the maximum capacity of MPGM adsorbing MO was more than 80 mg·g-1. The adsorption equilibrium and kinetics of MPGM followed typical pseudo-first-order and Langmuir adsorption models respectively. The thermodynamic parameters of ΔGo, ΔHo and ΔSo showed that the adsorption was an endothermic and spontaneous process without remarkable change. The spent MPGM was regenerated 5 times and probable pathway for the efficient and re-utilizing adsorbent has been proposed. The results indicate that MPGM has a structure of silicon-aluminium-calcium-carbon, and could be employed as porous, low density, and large specific surface area alternatives for the removal of cations dyes from industrial wastewater.
王恩文1,2,ZHANG Shichun1,HUANG Teng1,ZHONG Lele1
1. School of Resources and Environmental Engineering, Wuhan University of Technology2. Engneering Center of Avionics Electrical and Information Network of Guizhou Province Colleges and Universities, Anshun University
摘 要:Sodium bentonite, graphite, light calcium carbonate and diatomite were used as parent minerals for the mineral-based porous granulated material(MPGM) which was tested for the removal of methyl orange(MO), a cationic dye, from aqueous solution. The adsorption capacity was evaluated under the conditions of varied initial p H, adsorbent dosage, dye concentration, temperature, reaction time, and static regeneration. Experimental results showed that the maximum capacity of MPGM adsorbing MO was more than 80 mg·g-1. The adsorption equilibrium and kinetics of MPGM followed typical pseudo-first-order and Langmuir adsorption models respectively. The thermodynamic parameters of ΔGo, ΔHo and ΔSo showed that the adsorption was an endothermic and spontaneous process without remarkable change. The spent MPGM was regenerated 5 times and probable pathway for the efficient and re-utilizing adsorbent has been proposed. The results indicate that MPGM has a structure of silicon-aluminium-calcium-carbon, and could be employed as porous, low density, and large specific surface area alternatives for the removal of cations dyes from industrial wastewater.
关键词: