Influence of process parameters on thickness and wear resistance of rare earth modified chromium coatings on P110 steel synthesized by pack cementation
来源期刊:Journal of Rare Earths2011年第4期
论文作者:林乃明 谢发勤 吴向清 田伟
文章页码:396 - 400
摘 要:The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels. While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 oC for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.
林乃明1,谢发勤1,吴向清1,田伟1,2
1. School of Aeronautics, Northwestern Polytechnical University2. Tubular Goods Research Institute, China National Petroleum Corporation
摘 要:The pack cementation was employed to produce rare earth modified chromium coatings on P110 steel aiming at improving its performance and increasing the usage lifetime during operation. The orthogonal array design (OAD) was applied to set experiments. Contents of NH4Cl, types of RE, contents of RE, test temperature and soaking time were the main factors, and each factor was endowed with four levels. While the range analysis and analysis of variance were used to investigate the results of OAD tests on thickness and wear resistance. The results indicated that for a promising coating with higher thickness value and excellent anti-wear property, the test temperature was the most significant process factor. The potential promising conditions for chromizing treatment were: adding 1% NH4Cl and 1% LaCl3, maintaining the test temperature at 1000 oC for 8 h. The results of verification showed that the coating formed under the optimal process parameter had a valid thickness of 28 μm and a reduction of 0.32 mg in wear resistance test.
关键词: