Ferromagnetic–paramagnetic transition temperature in bulk and nanostructured La0.7SrxCa0.3-xMnO3(x=0.10, 0.15, and 0.20) manganite materials
来源期刊:Rare Metals2017年第6期
论文作者:Somasundaram Praveen Kumar Kathiresan Sakthipandi Ramamurthy Gayathiri Mathu Sridhar Panday Arumugam Karthik Venkatachalam Rajendran
文章页码:501 - 511
摘 要:Series of bulk and nanostructured La0.7SrxCa0.3-xMnO3(x = 0.10, 0.15, and 0.20) manganites were synthesized and characterized using different techniques. In the series, both the bulk and nanostructured La0.7Sr0.10Ca0.20MnO3 and La0.7Sr0.20Ca0.10MnO3 manganites have orthorhombic and rhombohedral structures, whereas La0.7Sr0.15Ca0.15MnO3 manganite has rhombohedral and orthorhombic structures, respectively. Online ultrasonic velocity and attenuation measurements were taken through an indigenously designed ultrasonic setup, and the analysis was done from 300 to 400 K during the aging of the samples to explore the structural/phase transitions. The bulk and nanocrystalline La0.7SrxCa0.3-xMnO3 perovskite samples show the particle size distribution in the range of 197–943 and 24–93 nm, respectively. The addition of Sr2+ alters the size of particles, which decrease in size. The observed anomaly in ultrasonic velocities, attenuations, and elastic moduli is correlated with the ferromagnetic–paramagnetic(FM–PM) transition temperature(TC) in both bulk and nanocrystalline perovskites. In addition, the shift in TC and the magnitude and width of observed anomaly are correlated with the value of x to study the behavior of TC.
Somasundaram Praveen Kumar1,2,Kathiresan Sakthipandi1,Ramamurthy Gayathiri1,Mathu Sridhar Panday1,Arumugam Karthik1,Venkatachalam Rajendran1
1. Centre for Nano Science and Technology, K.S. Rangasamy College of Technology, Anna University2. Research and Development Centre, Bharathiar University
摘 要:Series of bulk and nanostructured La0.7SrxCa0.3-xMnO3(x = 0.10, 0.15, and 0.20) manganites were synthesized and characterized using different techniques. In the series, both the bulk and nanostructured La0.7Sr0.10Ca0.20MnO3 and La0.7Sr0.20Ca0.10MnO3 manganites have orthorhombic and rhombohedral structures, whereas La0.7Sr0.15Ca0.15MnO3 manganite has rhombohedral and orthorhombic structures, respectively. Online ultrasonic velocity and attenuation measurements were taken through an indigenously designed ultrasonic setup, and the analysis was done from 300 to 400 K during the aging of the samples to explore the structural/phase transitions. The bulk and nanocrystalline La0.7SrxCa0.3-xMnO3 perovskite samples show the particle size distribution in the range of 197–943 and 24–93 nm, respectively. The addition of Sr2+ alters the size of particles, which decrease in size. The observed anomaly in ultrasonic velocities, attenuations, and elastic moduli is correlated with the ferromagnetic–paramagnetic(FM–PM) transition temperature(TC) in both bulk and nanocrystalline perovskites. In addition, the shift in TC and the magnitude and width of observed anomaly are correlated with the value of x to study the behavior of TC.
关键词: