简介概要

X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

来源期刊:International Journal of Minerals Metallurgy and Materials2015年第11期

论文作者:Elisa Lam Peter J.Swedlund Sylvie Marchesseau Yacine Hemar

文章页码:1225 - 1231

摘    要:The changes in the crystal structures of synthetically prepared amorphous calcium phosphate(ACP) and hydroxyapatite(HAP) in water(1:1 mass ratio) were studied by synchrotron X-ray diffraction(XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

详情信息展示

X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

Elisa Lam1,Peter J.Swedlund1,Sylvie Marchesseau3,Yacine Hemar1

1. School of Chemical Sciences, The University of Auckland3. Université Montpellier 2, UMR IATE, Pl.E Bataillon,34095 Montpellier cedex 5, France

摘 要:The changes in the crystal structures of synthetically prepared amorphous calcium phosphate(ACP) and hydroxyapatite(HAP) in water(1:1 mass ratio) were studied by synchrotron X-ray diffraction(XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号