Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials

来源期刊:中国有色金属学报(英文版)2009年第5期

论文作者:夏扬 宋月清 林晨光 崔舜 方针正

文章页码:1161 - 1166

Key words:diamond-Cu composite; carbide forming elements; thermal conductivity; thermal boundary resistance; interfacial layer

Abstract: Diamond-copper composites were prepared by powder metallurgy, in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements (including B, Cr, Ti, and Si). The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated. It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K). Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu, while addition of 1%Cr makes the interfacial layer break away from diamond surface. The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer, which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.

基金信息:the National High-tech Research and Development Program of China

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号