Preparation of high performance YGdBCO films by low fluorine TFA-MOD process
来源期刊:JOURNAL OF RARE EARTHS2020年第7期
论文作者:Zebin Dong Fazhu Ding Hongjing Shang Daxing Huang Wenjuan Xu Taiguang Li Qi Zou Hongwei Gu
文章页码:755 - 762
摘 要:YBCO films doped with different contents of gadolinium(Gd) were prepared by the low-fluorine(low-F)trifluoroacetate metal-organic deposition(MOD) method.The effects of flow rate and holding time of the firing(crystallization) stage on the superconducting properties of YxGd1-xBa2 Cu3 O7-δ(YGdBCO) films were investigated.The phase formation and texture were characterized by the X-ray diffraction(XRD),which indicate that severe degradation of the microstructure will be induced with the inappropriate flow rate.The surface morphology and element distribution were investigated by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS).The results show that increasing the holding time of the firing stage is effective for the further decomposition of residual impurity phase on the surface.The mechanisms of the phase and surface evolution are also discussed.Finally,a high critical current density(Jc) value of 5.4 MA/cm2 was achieved in the Y0.9Gd0.1BCO film fabricated by the cooperative control of the flow rate and holding time of the firing stage,which are contributed to the formation of excellent texture,homogeneous microstructure and dense surface of the YGdBCO films.
Zebin Dong1,2,3,Fazhu Ding1,2,3,Hongjing Shang1,2,3,Daxing Huang1,2,3,Wenjuan Xu1,2,3,Taiguang Li1,2,3,Qi Zou1,2,3,Hongwei Gu1,2,3
1. Key Laboratory of Applied Superconductivity,Chinese Academy of Sciences2. Institute of Electrical Engineering,Chinese Academy of Sciences3. University of Chinese Academy of Sciences
摘 要:YBCO films doped with different contents of gadolinium(Gd) were prepared by the low-fluorine(low-F)trifluoroacetate metal-organic deposition(MOD) method.The effects of flow rate and holding time of the firing(crystallization) stage on the superconducting properties of YxGd1-xBa2 Cu3 O7-δ(YGdBCO) films were investigated.The phase formation and texture were characterized by the X-ray diffraction(XRD),which indicate that severe degradation of the microstructure will be induced with the inappropriate flow rate.The surface morphology and element distribution were investigated by the scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS).The results show that increasing the holding time of the firing stage is effective for the further decomposition of residual impurity phase on the surface.The mechanisms of the phase and surface evolution are also discussed.Finally,a high critical current density(Jc) value of 5.4 MA/cm2 was achieved in the Y0.9Gd0.1BCO film fabricated by the cooperative control of the flow rate and holding time of the firing stage,which are contributed to the formation of excellent texture,homogeneous microstructure and dense surface of the YGdBCO films.
关键词: