Characterization of γ′ precipitates in a nickel base superalloy quenching from aging temperature at different rates
来源期刊:Rare Metals2010年第2期
论文作者:LI Hongyu, SONG Xiping, WANG Yanli, and CHEN Guoliang State Key Lab for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing , China
文章页码:204 - 208
摘 要:The characteristics of γ′ precipitates in a superalloy quenched from 1050°C at different rates were investigated using field emission scanning electron microscope(FESEM).When quenched from 1050°C, the size of primary aging γ′ precipitates has a small increase in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions and a drastic increase in the specimen that experienced a furnace-cooling-quenching condition.The cooling γ′ precipitates have unimodal distributions after quenching at the air-cooling rate and bimodal distributions after quenching at the furnace-cooling rate, but there are not these distributions in the specimens that experienced iced-brine-quenching and oil-quenching conditions.When aging at 760°C, the size of primary aging γ′ precipitates appears unaffected in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions.However, it has a drastic increase in the specimen that experienced a furnace-cooling-quenching condition, and it is interesting that the bigger cooling γ′ precipitates have a coalescence and octodendritic shape.The microhardness study indicates that the hardness has no variation in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions and has a drastic decrease in the specimens that experienced a furnace-cooling-quenching condition and obtains the minimum microhardness value 390.8 HV.
LI Hongyu, SONG Xiping, WANG Yanli, and CHEN Guoliang State Key Lab for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
摘 要:The characteristics of γ′ precipitates in a superalloy quenched from 1050°C at different rates were investigated using field emission scanning electron microscope(FESEM).When quenched from 1050°C, the size of primary aging γ′ precipitates has a small increase in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions and a drastic increase in the specimen that experienced a furnace-cooling-quenching condition.The cooling γ′ precipitates have unimodal distributions after quenching at the air-cooling rate and bimodal distributions after quenching at the furnace-cooling rate, but there are not these distributions in the specimens that experienced iced-brine-quenching and oil-quenching conditions.When aging at 760°C, the size of primary aging γ′ precipitates appears unaffected in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions.However, it has a drastic increase in the specimen that experienced a furnace-cooling-quenching condition, and it is interesting that the bigger cooling γ′ precipitates have a coalescence and octodendritic shape.The microhardness study indicates that the hardness has no variation in the specimens that experienced iced-brine-quenching, oil-quenching, and air-cooling-quenching conditions and has a drastic decrease in the specimens that experienced a furnace-cooling-quenching condition and obtains the minimum microhardness value 390.8 HV.
关键词: