Study on Properties of Ti(C,N)/TiN Multi-Element-layer Films Plus Nanometer Lubrication Dry Films
来源期刊:材料热处理学报2004年第5期
论文作者:ZHU You-li LI Chang-qing Ma Shi-ning HUANG Yuan-lin
关键词:Multi-arc ion plating; Aluminium alloys; Multi-element-layer films; Tribology;
摘 要:Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.1 which was nearly 21 times of that of the substrates. XRD analysis show that the main composition of the composite films system were Ti(C,N), TiN, Al3Ti, Al and a little Ti2N. The presence of Al3Ti new phase in the interface of the films/substrates indicated some metallurgical bonding between them, which implies higher adhesive strength of the films/substrates system. Pin-on-disc tests showed that the wear resistance of the substrates was improved substantially. However, the coefficient of friction of the films/substrate system was high (μ=0.66),which resulted in the wear of the counterparts. To reduce the coefficient of friction, nanometer lubrication dry films was applied on top of the multi-element-layer films to form composite films system and subsequent wear tests showed that the resulting composite films led to reduction of the coefficient of friction from 0.66 to 0.16. Meanwhile, wear mass loss of the counterpart was reduced from 1.29 mg to 0.02 mg, so that increased wear resistance and reduced friction effects were achieved.
ZHU You-li1,LI Chang-qing1,Ma Shi-ning1,HUANG Yuan-lin1
(1.State Key Laboratory for Remanufacturing , Beijing 100072, China)
摘要:Ti(C,N)/TiN multi-element-layer films was deposited on aluminium alloy substrates by using multi-arc ion plating. The microhardness of the films was 2000HV0.1 which was nearly 21 times of that of the substrates. XRD analysis show that the main composition of the composite films system were Ti(C,N), TiN, Al3Ti, Al and a little Ti2N. The presence of Al3Ti new phase in the interface of the films/substrates indicated some metallurgical bonding between them, which implies higher adhesive strength of the films/substrates system. Pin-on-disc tests showed that the wear resistance of the substrates was improved substantially. However, the coefficient of friction of the films/substrate system was high (μ=0.66),which resulted in the wear of the counterparts. To reduce the coefficient of friction, nanometer lubrication dry films was applied on top of the multi-element-layer films to form composite films system and subsequent wear tests showed that the resulting composite films led to reduction of the coefficient of friction from 0.66 to 0.16. Meanwhile, wear mass loss of the counterpart was reduced from 1.29 mg to 0.02 mg, so that increased wear resistance and reduced friction effects were achieved.
关键词:Multi-arc ion plating; Aluminium alloys; Multi-element-layer films; Tribology;
【全文内容正在添加中】