板形模式识别的GA-BP模型和改进的最小二乘法
来源期刊:钢铁2003年第10期
论文作者:张秀玲 刘宏民
关键词:板形; 模式识别; 勒让德多项式; 遗传算法; 神经网络; 最小二乘法;
摘 要:针对板宽变化时需要不同拓扑结构的神经网络才能完成板形模式识别任务,网络学习工作量大,网络存在收敛速度慢,易陷入局部极小等结构性能不佳的问题,首次建立了以勒让德正交多项式为基模式的只用6个输入信号、3个输出信号的板形模式识别GA-BP网络模型.该模型不仅结构简单,而且物理意义明确,识别精度较高,解决了板宽变化时神经网络结构形式不变的问题,从而实现了板形模式识别的智能化.又提出了基于勒让德正交多项式的板形模式识别最小二乘法,该方法简单、实用,识别精度较高,克服了传统的最小二乘模型板形模式识别的缺点和不足.为板形模式识别提供了两种简便实用的新方法,发展了板形模式识别理论和方法.
张秀玲1,刘宏民1
(1.燕山大学)
摘要:针对板宽变化时需要不同拓扑结构的神经网络才能完成板形模式识别任务,网络学习工作量大,网络存在收敛速度慢,易陷入局部极小等结构性能不佳的问题,首次建立了以勒让德正交多项式为基模式的只用6个输入信号、3个输出信号的板形模式识别GA-BP网络模型.该模型不仅结构简单,而且物理意义明确,识别精度较高,解决了板宽变化时神经网络结构形式不变的问题,从而实现了板形模式识别的智能化.又提出了基于勒让德正交多项式的板形模式识别最小二乘法,该方法简单、实用,识别精度较高,克服了传统的最小二乘模型板形模式识别的缺点和不足.为板形模式识别提供了两种简便实用的新方法,发展了板形模式识别理论和方法.
关键词:板形; 模式识别; 勒让德多项式; 遗传算法; 神经网络; 最小二乘法;
【全文内容正在添加中】