基于机器视觉的再生铜铜含量快速估计系统

来源期刊:中国有色金属学报(英文版)2014年第8期

论文作者:张宏伟 葛志强 袁小锋 宋执环 叶凌箭

文章页码:2665 - 2676

关键词:再生铜;铜含量估计;样本筛选;颜色向量角;最小二乘支持向量回归

Key words:secondary copper; copper content estimation; sample selection; color vector angle; least squares support vector regression

摘    要:针对废杂铜再生熔炼过程中铜含量指标离线检测时滞大的问题,提出一个基于机器视觉的铜含量快速检测系统。首先,使用3CCD彩色相机获取再生铜样本的横截面图像。然后,利用图像亮度标准差和边缘像素百分比这两个特征筛选建模样本。改进了颜色向量角,并提取建模铜样本的颜色向量角。最后,利用改进的颜色向量角和实测铜含量数据建立一个基于最小二乘支持向量机的铜含量估计模型。为了对比,如下铜含量最小二乘支持向量回归模型也被建立: 1)仅使用样本筛选方法; 2) 仅改进颜色向量角;3) 不使用样本筛选方法和改进的颜色向量角。另外,还分别建立了使用样本筛选方法和不使用样本筛选方法的两个指数函数铜含量回归模型。实验结果表明,同时使用样本筛选方法和改进颜色向量角的最小二乘支持向量回归模型具有最高的估计准确度,尤其是当建模样本数目较少的时候。

Abstract: A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号