基于实验数据的航空发动机稳态模型建模
来源期刊:机械设计与制造2021年第1期
论文作者:白杰 张正 王伟
文章页码:62 - 66
关键词:航空发动机;模型辨识;稳态模型;神经网络;改进粒子群优化算法;
摘 要:针对基于部件级航空发动机稳态建模过程中完整、准确的航空发动机部件特性数据往往难以获取,建模时间长等现象,提出使用实验数据进行辨识建模的方法;为了建立航空发动机的稳态模型,通过对某轻型飞机实验台的飞行实验数据进行分析整理,提出使用BP神经网络对发动机重要参数进行建模,同时使用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络的权值和阈值进行优化。最后,使用改进粒子群优化算法(Improved particle swarm optimization algorithm,IPSO)对传统粒子群优化算法进行改进,仿真结果表明IPSO-BP网络建立的发动机模型精度更高,稳定性更好。
白杰1,张正1,2,王伟1
1. 中国民航大学民用航空器适航与维修重点实验室2. 中国民航大学航空工程学院
摘 要:针对基于部件级航空发动机稳态建模过程中完整、准确的航空发动机部件特性数据往往难以获取,建模时间长等现象,提出使用实验数据进行辨识建模的方法;为了建立航空发动机的稳态模型,通过对某轻型飞机实验台的飞行实验数据进行分析整理,提出使用BP神经网络对发动机重要参数进行建模,同时使用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络的权值和阈值进行优化。最后,使用改进粒子群优化算法(Improved particle swarm optimization algorithm,IPSO)对传统粒子群优化算法进行改进,仿真结果表明IPSO-BP网络建立的发动机模型精度更高,稳定性更好。
关键词:航空发动机;模型辨识;稳态模型;神经网络;改进粒子群优化算法;