简介概要

基于实验数据的航空发动机稳态模型建模

来源期刊:机械设计与制造2021年第1期

论文作者:白杰 张正 王伟

文章页码:62 - 66

关键词:航空发动机;模型辨识;稳态模型;神经网络;改进粒子群优化算法;

摘    要:针对基于部件级航空发动机稳态建模过程中完整、准确的航空发动机部件特性数据往往难以获取,建模时间长等现象,提出使用实验数据进行辨识建模的方法;为了建立航空发动机的稳态模型,通过对某轻型飞机实验台的飞行实验数据进行分析整理,提出使用BP神经网络对发动机重要参数进行建模,同时使用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络的权值和阈值进行优化。最后,使用改进粒子群优化算法(Improved particle swarm optimization algorithm,IPSO)对传统粒子群优化算法进行改进,仿真结果表明IPSO-BP网络建立的发动机模型精度更高,稳定性更好。

详情信息展示

基于实验数据的航空发动机稳态模型建模

白杰1,张正1,2,王伟1

1. 中国民航大学民用航空器适航与维修重点实验室2. 中国民航大学航空工程学院

摘 要:针对基于部件级航空发动机稳态建模过程中完整、准确的航空发动机部件特性数据往往难以获取,建模时间长等现象,提出使用实验数据进行辨识建模的方法;为了建立航空发动机的稳态模型,通过对某轻型飞机实验台的飞行实验数据进行分析整理,提出使用BP神经网络对发动机重要参数进行建模,同时使用粒子群优化算法(Particle swarm optimization,PSO)对BP神经网络的权值和阈值进行优化。最后,使用改进粒子群优化算法(Improved particle swarm optimization algorithm,IPSO)对传统粒子群优化算法进行改进,仿真结果表明IPSO-BP网络建立的发动机模型精度更高,稳定性更好。

关键词:航空发动机;模型辨识;稳态模型;神经网络;改进粒子群优化算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号