简介概要

A new robust fuzzy method for unmanned flying vehicle control

来源期刊:中南大学学报(英文版)2015年第6期

论文作者:Mojtaba Mirzaei Mohammad Eghtesad Mohammad Mahdi Alishahi

文章页码:2166 - 2182

Key words:adaptive fuzzy sliding-mode control; unmanned flying vehicle control; underactuated system; Lyapunov stability; high speed underwater vehicle

Abstract: A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles (UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control (IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.

详情信息展示

A new robust fuzzy method for unmanned flying vehicle control

Mojtaba Mirzaei, Mohammad Eghtesad, Mohammad Mahdi Alishahi

(Department of Mechanical Engineering, Shiraz University, Mollasadra Square Shiraz, Iran)

Abstract:A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles (UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control (IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.

Key words:adaptive fuzzy sliding-mode control; unmanned flying vehicle control; underactuated system; Lyapunov stability; high speed underwater vehicle

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号