简介概要

从神经网络到支撑矢量机(上)

来源期刊:冶金自动化2001年第5期

论文作者:罗公亮

关键词:神经网络; 支撑矢量机; 统计推断; 预知性学习;

摘    要:在统计模式识别中,Bayes决策规则从理论上解决了最优分类器的设计问题,然而其实施却必须首先解决更困难的概率密度估计问题.BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指导工程实践的坚实理论基础.统计推断理论研究所取得的突破性成果导致现代统计学习理论--VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法--支撑矢量机(SVM).SVM已经在一些实际问题中获得了成功的应用,性能优于传统的神经网络方法.本文以模式识别问题为背景,介绍VC理论的主要内容及支撑矢量机方法.

详情信息展示

从神经网络到支撑矢量机(上)

罗公亮1

(1.冶金自动化研究设计院)

摘要:在统计模式识别中,Bayes决策规则从理论上解决了最优分类器的设计问题,然而其实施却必须首先解决更困难的概率密度估计问题.BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术,缺乏指导工程实践的坚实理论基础.统计推断理论研究所取得的突破性成果导致现代统计学习理论--VC理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法--支撑矢量机(SVM).SVM已经在一些实际问题中获得了成功的应用,性能优于传统的神经网络方法.本文以模式识别问题为背景,介绍VC理论的主要内容及支撑矢量机方法.

关键词:神经网络; 支撑矢量机; 统计推断; 预知性学习;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 主办 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(湘)字第028号   湘ICP备09001153号