简介概要

基于Curvelet变换的地震资料弱信号识别及去噪方法

来源期刊:煤炭学报2016年第2期

论文作者:金丹 程建远 王保利 张宪旭 孙永亮

文章页码:332 - 337

关键词:Curvelet变换;自适应阈值;随机噪声;弱信号;

摘    要:针对地震资料中背景噪声较强,有效弱信号淹没其中难以识别,且在时间域地震有效信号和随机噪声又较难分离的问题,尝试将其通过Curvelet变换进行信噪分离。在Curvelet的不同尺度域采用自适应阈值函数对噪声进行压制,保留有效信号系数;同时,阈值函数中引入不同尺度域地震剖面信噪比,通过与信噪比相关的权值系数降低具有高信噪比的尺度域阈值,从而保留被随机噪声淹没的弱信号;最后对残留噪声系数再应用中值滤波,进一步压制噪声,突出弱信号。与常用于弱信号识别处理的小波变换,以及Curvelet变换的固定阈值处理方法相比,具有多尺度多方向性的Curvelet变换能够更加有效的刻画地震信号,结合自适应的阈值处理时,在弱信号识别及去噪方面具有明显优势。

详情信息展示

基于Curvelet变换的地震资料弱信号识别及去噪方法

金丹,程建远,王保利,张宪旭,孙永亮

中煤科工集团西安研究院有限公司

摘 要:针对地震资料中背景噪声较强,有效弱信号淹没其中难以识别,且在时间域地震有效信号和随机噪声又较难分离的问题,尝试将其通过Curvelet变换进行信噪分离。在Curvelet的不同尺度域采用自适应阈值函数对噪声进行压制,保留有效信号系数;同时,阈值函数中引入不同尺度域地震剖面信噪比,通过与信噪比相关的权值系数降低具有高信噪比的尺度域阈值,从而保留被随机噪声淹没的弱信号;最后对残留噪声系数再应用中值滤波,进一步压制噪声,突出弱信号。与常用于弱信号识别处理的小波变换,以及Curvelet变换的固定阈值处理方法相比,具有多尺度多方向性的Curvelet变换能够更加有效的刻画地震信号,结合自适应的阈值处理时,在弱信号识别及去噪方面具有明显优势。

关键词:Curvelet变换;自适应阈值;随机噪声;弱信号;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号