半主动悬架系统刚度动态迭代跟踪控制

来源期刊:中南大学学报(自然科学版)2017年第5期

论文作者:李仲兴 李重重 刘亚威 李美 徐兴

文章页码:1204 - 1211

关键词:半主动悬架;刚度可控;动态迭代跟踪;遗传算法;平顺性

Key words:semi-active suspension; controllable stiffness; dynamic and trackable interation; genetic algorithm; ride comfort

摘    要:为进一步提高车辆行驶平顺性,结合可变刚度半主动悬架系统的特点,提出动态迭代跟踪控制算法,并应用于可变刚度半主动悬架系统。基于Matlab/Simulink建立七自由度整车仿真模型。选取簧载质量加速度、悬架动行程和轮胎动载荷的均方根为平顺性评价指标,通过层次分析法确定各评价指标的权重系数,利用遗传算法确定典型工况下悬架最优刚度。采用动态迭代跟踪算法控制悬架刚度,根据所得刚度与最优刚度的差异确定控制算法的修正系数,在典型工况下使其控制参数与寻优所得参数吻合,并对其他工况下的控制效果进行验证。仿真结果表明:提出的控制算法在混合工况下能有效地使簧载质量加速度均方根减小6.34%,悬架动行程均方根减小7.35%,从而提高车辆行驶的平顺性。

Abstract: In order to improve the ride comfort of vehicles, a new control method named dynamic and trackable iteration control, which combined the advantages of semi-active suspension system, was proposed to control stiffness for semi-active suspension system. The 7POF simulation model of the vehicle was established by Matlab/Simulink. The root-mean-square values of body acceleration, dynamic suspension travel and tire load were chosen as evaluation indexes, and weight coefficients of the indexes were obtained by analytic hierarchy process method, and genetic algorithm was applied to get the optimal suspension stiffness in the typical condition. By using the dynamic and trackable iteration to control stiffness, and then according to the difference between the stiffness of computational and optimal, the correction coefficient of control algorithm was determined. Under typical conditions, parameters of control and optimization were identical, and control effects were verified under other conditions. The simulation results show that body acceleration and dynamic suspension travel decrease by 6.34% and 7.35% respectively under mixed conditions, and the ride comfort of vehicles is improved by the proposed control method.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号