三维针刺C/C-SiC复合材料预制体工艺参数优化
来源期刊:材料工程2020年第1期
论文作者:戚云超 方国东 梁军 谢军波
文章页码:27 - 33
关键词:针刺复合材料;BP神经网络;刚度性能预测;遗传算法;工艺优化;
摘 要:基于误差反向传播(BP)神经网络与改进的遗传算法建立三维针刺C/C-SiC复合材料预制体工艺优化的代理模型,获得针刺工艺参数与复合材料刚度性能之间的关系。利用BP网络实现复合材料刚度性能预测,BP网络的预测值与有限元计算结果吻合程度较好,模型训练误差最大为0.526%,测试数据误差最大为0.454%,BP网络预测精度高。对传统遗传算法的遗传策略和优化策略进行改进,利用两种改进的遗传算法对针刺工艺参数进行优化。优化后的工艺参数显著提高了材料的刚度性能,其中面内拉伸模量分别提高了11.07%和11.48%,面外拉伸模量分别提高了49.64%和48.13%,复合材料的综合刚度性能分别提高18.17%和18.21%。
戚云超1,方国东1,梁军2,谢军波3
1. 哈尔滨工业大学特种环境复合材料技术国家级重点实验室2. 北京理工大学宇航学院3. 天津工业大学先进纺织复合材料教育部重点实验室
摘 要:基于误差反向传播(BP)神经网络与改进的遗传算法建立三维针刺C/C-SiC复合材料预制体工艺优化的代理模型,获得针刺工艺参数与复合材料刚度性能之间的关系。利用BP网络实现复合材料刚度性能预测,BP网络的预测值与有限元计算结果吻合程度较好,模型训练误差最大为0.526%,测试数据误差最大为0.454%,BP网络预测精度高。对传统遗传算法的遗传策略和优化策略进行改进,利用两种改进的遗传算法对针刺工艺参数进行优化。优化后的工艺参数显著提高了材料的刚度性能,其中面内拉伸模量分别提高了11.07%和11.48%,面外拉伸模量分别提高了49.64%和48.13%,复合材料的综合刚度性能分别提高18.17%和18.21%。
关键词:针刺复合材料;BP神经网络;刚度性能预测;遗传算法;工艺优化;