海水胶结作用对碳酸盐岩石组构的影响: 以四川盆地东北部三叠系飞仙关组为例

来源期刊:中南大学学报(自然科学版)2013年第12期

论文作者:黄思静 李小宁 兰叶芳 成欣怡

文章页码:5007 - 5019

关键词:四川盆地东北部;三叠系飞仙关组;海水胶结作用;镁方解石-文石;碳酸盐岩的结构

Key words:NE sichuan basin; feixianguan formation of triassic; marine cementation; Mg-calcite-aragonite; textures of carbonates

摘    要:在薄片分析、阴极发光分析、全岩化学分析、不同组构电子探针分析和包裹体均一化温度分析的基础上,研究了四川盆地东北部三叠系飞仙关组鲕粒灰岩、在成分上介于灰岩和白云岩之间的亮晶鲕粒白云岩-灰岩(灰质白云岩或白云质灰岩)以及结晶白云岩的结构。研究表明:四川盆地东北部三叠系飞仙关组鲕粒碳酸盐岩的海水胶结作用发育,这些胶结物目前全由方解石组成,具有非常低的锰、铁含量,没有或只有极弱的阴极发光,缺乏可进行温度测量的气-液两相包裹体,显示近地表海水潜流环境的特征;鲕粒碳酸盐岩的海水胶结物具有大范围变化的锶含量,一部分分布在10-4数量级,另一部分分布在10-3数量级,说明它们是由不同的先驱CaCO3矿物新生变形而来,低锶含量的方解石是镁方解石新生变形的产物,高锶含量的方解石是文石新生变形的产物;由低锶方解石胶结(先驱矿物是镁方解石)和由高锶方解石胶结(先驱矿物是文石)的鲕粒碳酸盐岩具有不同的胶结物结构和岩石结构,前者有极好的栉壳状胶结物结构,岩石的鲕粒结构保存较好,白云化后白云石晶体较小,不完全白云化时白云石仅分布在鲕粒中,后者缺乏良好的栉壳状胶结物结构,岩石的鲕粒结构保存差,白云化后白云石晶体较大,完全白云化时白云石可分布在鲕粒中,也可分布在胶结物中;原始胶结物为镁方解石的鲕粒碳酸盐岩和原始胶结物为文石的鲕粒碳酸盐岩相比,在相同的白云化环境中,前者因具有内部镁来源而可能使白云石的结晶速度更快,白云石的晶体相对较小,白云石的锰含量更低,阴极发光更弱,白云化作用不一定需要对海水开放的环境以提供镁的来源;后者因缺乏内部镁来源而可能使白云石的结晶速度较慢,白云石的晶体相对较大,白云石的锰含量相对较高,阴极发光相对较强,白云化作用需要对海水开放的环境以提供足够的镁来源;用以对比的鲕粒碳酸盐岩中的非海水胶结物的锰含量是海水胶结物的200倍以上,铁含量也高一个数量级,并具极强的阴极发光性,包裹体均一化温度在105.6~117.3 ℃之间,它们是深埋藏成岩环境中直接沉淀的方解石胶结物;文石质胶结物新生变形成方解石后仍然可以较好地保存原始矿物中的锶,残留锶含量仍可达10-3数量级,但文石质鲕粒新生变形成方解石后其锶含量很难保存,通常只残留10-3数量级的锶,这主要与鲕粒由小的碳酸盐质点构成,比胶结物晶体具有更大的表面积和较好的内部渗透率有关。

Abstract: Based on the thin section observation under microscope and cathodoluminoscope, electron microprobe and whole rock chemical analysis of different fabrics, and inclusion homogenization temperature analysis, the textures of oolitic limestone, sparry oolitic dolomite-limestone (with the transition composition between limestone and dolomite) and crystalline dolomite were studied. The results show that: Marine cementation is well developed in oolitic carbonates of Triassic Feixianguan Formation in NE Sichuan Basin. All these marine cements are composed of calcite with very low manganese and iron, without cathodoluminescene or dull cathodoluminescene, and are in lack of two-phase inclusions that can be used to measure temperature, representing the characteristics of marine phreatic zone near surface. The strontium content of marine cements in oolitic carbonates varies in a large range, with one distributing in several hundreds of 10-6 and the other in several thousands for 10-6, which indicates that these marine cements are generated by different precursor minerals of CaCO3 through neomorphism, that is, the calcite with low strontium is generated by Mg-calcite and the calcite with high strontium by aragonite through neomorphism. Oolitic carbonates cemented by calcite with low strontium (Mg-calcite as precursor mineral) has excellent pectinate fabric cement, well preserved oolitic texture and small dolomite crystals after dolomitization. In case of incomplete dolomization, the dolomite is constrained in the oolite. On the other hand, oolitic carbonates cemented by calcite with high strontium (aragonite as precursor mineral) is lack of pectinate calcite cement, with oolitic texture poorly preserved. The dolomite crystal is relatively large after dolomitization, and the oolite is frequently cut by dolomite crystals. The oolitic carbonates cemented by original Mg-calcite may have faster dolomitization rate due to the internal source of magnesium, resulting in smaller dolomite crystal size, lower manganese content, and duller cathodoluminescence, and the dolomitization may happen in an environment closed to seawater which provides magnesium. On the other hand, the oolitic carbonates cemented by original aragonite cement may have slower dolomitization rate due to lack of internal source of magnesium, resulting in larger dolomite crystal size, higher manganese content, and brighter cathodoluminescence. The dolomitization environment should be open to seawater which provide enough magnesium. The manganese content of non-marine cements (for comparison) in oolitic limestoone is more than 200 times higher than that in marine cements, while the iron content is an order of magnitude higher than that in marine cements. These non-marine cements can lead to very bright cathodoluminescence. The homogenization temperature of 105.6 to 117.3 ℃ of their fluid inclusions shows that these non-marine cements are calcite cements directly precipitated in deep burial diagenetic environments. After aragonitic cements are transformed to calcites by neomorphism, the strontium in the original mineral still can be well preserved and the residual strontium may reach several thousands of 10-6. However, after aragonitic oolites are transformed to calcites by neomorphism, it is difficult to preserve the strontium; with only hundreds of 10-6 of strontium left. The main reason is that the oolite, constituted by small carbonate particles, has larger surface area and higher inner permeability than those of cements.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号