简介概要

Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第9期

论文作者:K.Zhang Z.B.Wang

文章页码:1676 - 1684

摘    要:In the present work, an ultrahigh strength bearing steel(AISI 52100) was subjected to surface mechanical rolling treatment(SMRT) at room temperature. Microstructural observations showed that martensitic laths, twins and cementite particles in the initial microstructure underwent distinct plastic strains and were gradually refined into nanostructures. Consequently, a gradient nanostructured(GNS) surface layer with a mean grain size of 24 nm at the top surface was obtained on the bearing steel, resulting in an increment of 20% in the surface hardness. Analyses based on microstructural evolution, phase constitution and in-depth hardness distribution revealed a mechanically induced formation mechanism of the GNS surface layer. The multiple surface severe plastic deformation under fine lubrication and cooling during SMRT contributed to the formation of a thick hardened surface layer on the bearing steel.

详情信息展示

Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel

K.Zhang1,2,Z.B.Wang1

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences2. University of Chinese Academy of Sciences

摘 要:In the present work, an ultrahigh strength bearing steel(AISI 52100) was subjected to surface mechanical rolling treatment(SMRT) at room temperature. Microstructural observations showed that martensitic laths, twins and cementite particles in the initial microstructure underwent distinct plastic strains and were gradually refined into nanostructures. Consequently, a gradient nanostructured(GNS) surface layer with a mean grain size of 24 nm at the top surface was obtained on the bearing steel, resulting in an increment of 20% in the surface hardness. Analyses based on microstructural evolution, phase constitution and in-depth hardness distribution revealed a mechanically induced formation mechanism of the GNS surface layer. The multiple surface severe plastic deformation under fine lubrication and cooling during SMRT contributed to the formation of a thick hardened surface layer on the bearing steel.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号