一种新的HMM/SVM混合语音识别模型
来源期刊:控制工程2016年第11期
论文作者:高家宝 来羽
文章页码:1802 - 1807
关键词:语音识别;支持向量机;隐藏马尔可夫模型;小生境技术:共享机制;蛙跳搜索;
摘 要:提出了一种新的基于隐藏马尔可夫(HMM)和支持向量机(SVM)的混合HMM/SVM模型。该模型利用HMM完成语音时间序列建模,计算得到信息输出概率,输入SVM中进行学习,输出语音分类信息,以完成识别决策。在此模型基础上,设计了一种基于并行结构蛙跳搜索算法(PSFL)优化SVM参数的方法以提升噪声环境下的语音识别效率。PSFL改进蛙跳搜索算法的循环主体,能够在寻优过程中维持个体多样性和提高收敛速度。实验结果表明,PSFL具有更优的收敛速度和优化性能,混合SVM/HMM模型在干净和噪声环境均能够获得很好的语音识别效率。
高家宝1,来羽2
1. 河池学院现代教育技术中心2. 中州大学开放教育学院
摘 要:提出了一种新的基于隐藏马尔可夫(HMM)和支持向量机(SVM)的混合HMM/SVM模型。该模型利用HMM完成语音时间序列建模,计算得到信息输出概率,输入SVM中进行学习,输出语音分类信息,以完成识别决策。在此模型基础上,设计了一种基于并行结构蛙跳搜索算法(PSFL)优化SVM参数的方法以提升噪声环境下的语音识别效率。PSFL改进蛙跳搜索算法的循环主体,能够在寻优过程中维持个体多样性和提高收敛速度。实验结果表明,PSFL具有更优的收敛速度和优化性能,混合SVM/HMM模型在干净和噪声环境均能够获得很好的语音识别效率。
关键词:语音识别;支持向量机;隐藏马尔可夫模型;小生境技术:共享机制;蛙跳搜索;