Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures

来源期刊:中南大学学报(英文版)2016年第6期

论文作者:杨圣奇 黄彦华 曾卫

文章页码:1474 - 1485

Key words:rock mechanics; two pre-existing fissures; strength parameters; crack coalescence; particle flow simulation

Abstract: A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out. On the basis of experimental and numerical results, the stress-strain curves, mechanical properties, AE events, cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates. Investigated results show that: 1) When the loading rate is relatively low, the stress-strain curves show a brittle response. When the loading rate is relatively high, the curve shows a more ductile response. Both of the peak strength and elastic mudulus increase with the increase of loading rate, which can be expressed as power functions. 2) Four crack types are identified, i.e., tensile crack, shear crack, far-field crack and surface spalling. Moreover, the tensile crack, far-field crack and surface spalling are under tensile mechanism, while the shear crack is under shear mechanism. 3) The drops of the stress-strain curves all correspond to the crack initiation or coalescence, which is also linked to a sudden increasing in the accumulated micro-crack curve. 4) Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength, which indicates that the trend of peak strength can be explained by the meso-mechanics and energy.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号