拟合故障振动信号模型实现滚动轴承故障诊断
来源期刊:机械设计与制造2017年第11期
论文作者:郭艳平 龙涛元
文章页码:205 - 208
关键词:滚动轴承;故障信号模型;数据拟合;EMD;遗传算法;
摘 要:针对传统故障诊断流程的缺点,提出通过拟合故障振动信号模型实现滚动轴承故障诊断,并在风力发电机组齿轮箱故障诊断中验证了有效性和实用性。首先根据滚动轴承发生故障时振动信号的特点,提出故障振动信号模型,然后通过遗传算法对该模型做数据拟合,拟合数据来自EMD(Empirical Mode Decomposition)方法对原始振动信号分解所得IMF(Intrinsic Mode Function)分量,最后将拟合结果和轴承各部件的故障特征频率作对比,可知损伤点所在部位。通过仿真、实验和现场信号的分析,验证了可通过拟合故障振动信号模型实现故障部位的准确诊断。
郭艳平1,龙涛元1
1. 中山火炬职业技术学院
摘 要:针对传统故障诊断流程的缺点,提出通过拟合故障振动信号模型实现滚动轴承故障诊断,并在风力发电机组齿轮箱故障诊断中验证了有效性和实用性。首先根据滚动轴承发生故障时振动信号的特点,提出故障振动信号模型,然后通过遗传算法对该模型做数据拟合,拟合数据来自EMD(Empirical Mode Decomposition)方法对原始振动信号分解所得IMF(Intrinsic Mode Function)分量,最后将拟合结果和轴承各部件的故障特征频率作对比,可知损伤点所在部位。通过仿真、实验和现场信号的分析,验证了可通过拟合故障振动信号模型实现故障部位的准确诊断。
关键词:滚动轴承;故障信号模型;数据拟合;EMD;遗传算法;