Health monitoring and comparative analysis of time-dependent effect using different prediction models for self-anchored suspension bridge with extra-wide concrete girder

来源期刊:中南大学学报(英文版)2018年第9期

论文作者:李爱群 周广盼 李建慧 端茂军

文章页码:2025 - 2039

Key words:self-anchored suspension bridge; extra-wide concrete girder; health monitoring; concrete shrinkage and creep; prediction model; ambient temperature change; safety evaluation

Abstract: The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data. The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present. Its structural changes and safety were evaluated using the health monitoring data, which included deformations, detailed stresses, and vibration characteristics. The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep (S&C) were analyzed based on the measured data. The ANSYS beam finite element model was established and validated by the measured bridge completion state. The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models. The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete. Prestress relaxation was considered in the stepwise calculation. The results show that the transverse deviations of the towers are noteworthy. The spatial effect of the extra-wide girder is significant, as the compressive stress variations at the girder were uneven along the transverse direction. General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling, respectively. The temperature gradient effects in the main girder were significant. Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model, which can consider the concrete material parameters, than with the CEB-FIP 90 model. Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C. The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant. The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.

Cite this article as: ZHOU Guang-pan, LI Ai-qun, LI Jian-hui, DUAN Mao-jun. Health monitoring and comparative analysis of time-dependent effect using different prediction models for self-anchored suspension bridge with extra-wide concrete girder [J]. Journal of Central South University, 2018, 25(9): 2025–2039. DOI: https://doi.org/10.1007/s11771- 018-3892-7.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号