Effect of hydrogen content and stress state on room-temperature mechanical properties of Ti-6Al-4V alloy

来源期刊:中国有色金属学报(英文版)2009年增刊第2期

论文作者:袁宝国 李春峰 于海平 孙东立

文章页码:423 - 428

Key words:Ti-6Al-4V alloy; hydrogen content; stress state; mechanical properties

Abstract: This work aims to investigate the effects of hydrogen content (in the range of 0%-0.5%, mass fraction) and stress state (tension and compression) on the room-temperature mechanical properties of Ti-6Al-4V alloy through mechanical properties tests. The effects of hydrogen content on microstructure evolution of Ti-6Al-4V alloy is also examined by optical microscopy, X-ray diffractometry, transmission electron microscopy and scanning electron microscopy. The results show that hydrogen content and stress state have important effects on the room-temperature mechanical properties of Ti-6Al-4V alloy. Tensile strength and ultimate elongation decrease with increasing the hydrogen content, while compressive strength and ultimate reduction are improved after hydrogenation. The reason is that the intergranular deformation dominates at the state of tension. Hydrogen atoms in solid solution and hydrides at grain boundaries increase with increasing the hydrogen content and they can promote the initiation and propagation of cracks along grain boundaries. While the intragranular deformation dominates at the state of compression. The plastic beta phase and hydrides increase with increasing the hydrogen content and they improve the ultimate reduction and compressive strength.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号