简介概要

Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第6期

论文作者:Yuefeng Jiang Bo Zhang Dongying Wang Yu Zhou Jianqiu Wang En-Hou Han Wei Ke

文章页码:1081 - 1087

摘    要:Up to now, the exact reason of hydrogen-induced fracture for ferrite-pearlite(FP) steel is still not fully understood. This study presents detail observations of the feature beneath the fracture surface with the aim to reveal the hydrogen-induced cracking initiation and propagation processes. Slow strain rate tensile(SSRT) testing shows that the FP steel is sensitive to hydrogen embrittlement(HE). Focused ion beam(FIB)was used to prepare samples for TEM observations after HE fracture. The corresponding fractographic morphologies of hydrogen charged specimen exhibit intergranular(IG) and quasi-cleavage(QC) fracture feature. Pearlite colony, ferrite/pearlite(F/P) boundary and the adjacent ferrite matrix are found to be responsible for the initial HE fracture and the subsequent propagation. With increasing of the stress intensity factor, fracture mode is found to change from mixed IG and QC to entire QC feature which only occurs at the ferrite matrix. No crack is observed at the ferrite/cementite(F/C) interface. This may be mainly due to the limited pearlite lamella size and relatively low interface energy.

详情信息展示

Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel

Yuefeng Jiang,Bo Zhang,Dongying Wang,Yu Zhou,Jianqiu Wang,En-Hou Han,Wei Ke

摘 要:Up to now, the exact reason of hydrogen-induced fracture for ferrite-pearlite(FP) steel is still not fully understood. This study presents detail observations of the feature beneath the fracture surface with the aim to reveal the hydrogen-induced cracking initiation and propagation processes. Slow strain rate tensile(SSRT) testing shows that the FP steel is sensitive to hydrogen embrittlement(HE). Focused ion beam(FIB)was used to prepare samples for TEM observations after HE fracture. The corresponding fractographic morphologies of hydrogen charged specimen exhibit intergranular(IG) and quasi-cleavage(QC) fracture feature. Pearlite colony, ferrite/pearlite(F/P) boundary and the adjacent ferrite matrix are found to be responsible for the initial HE fracture and the subsequent propagation. With increasing of the stress intensity factor, fracture mode is found to change from mixed IG and QC to entire QC feature which only occurs at the ferrite matrix. No crack is observed at the ferrite/cementite(F/C) interface. This may be mainly due to the limited pearlite lamella size and relatively low interface energy.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号