Fault detection in flotation processes based on deep learning and support vector machine

来源期刊:中南大学学报(英文版)2019年第9期

论文作者:桂卫华 李中美 朱建勇

文章页码:2504 - 2515

Key words:flotation processes; convolutional neural network; support vector machine; froth images; fault detection

Abstract: Effective fault detection techniques can help flotation plant reduce reagents consumption, increase mineral recovery, and reduce labor intensity. Traditional, online fault detection methods during flotation processes have concentrated on extracting a specific froth feature for segmentation, like color, shape, size and texture, always leading to undesirable accuracy and efficiency since the same segmentation algorithm could not be applied to every case. In this work, a new integrated method based on convolution neural network (CNN) combined with transfer learning approach and support vector machine (SVM) is proposed to automatically recognize the flotation condition. To be more specific, CNN function as a trainable feature extractor to process the froth images and SVM is used as a recognizer to implement fault detection. As compared with the existed recognition methods, it turns out that the CNN-SVM model can automatically retrieve features from the raw froth images and perform fault detection with high accuracy. Hence, a CNN-SVM based, real-time flotation monitoring system is proposed for application in an antimony flotation plant in China.

Cite this article as: LI Zhong-mei, GUI Wei-hua, ZHU Jian-yong. Fault detection in flotation processes based on deep learning and support vector machine [J]. Journal of Central South University, 2019, 26(9): 2504-2515. DOI: https://doi.org/10.1007/s11771-019-4190-8.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号