简介概要

模型树和支持向量回归在高光谱遥感中的应用

来源期刊:中国矿业大学学报2006年第6期

论文作者:王圆圆 李京 陈云浩

关键词:高光谱; 模型树; 支持向量回归; 逐步回归;

摘    要:利用连续植被辐射传输模型(SAIL模型)模拟生成小麦冠层反射率数据,比较了数据挖掘中的新方法模型树、支持向量回归与传统的逐步回归用于高光谱数据定量预测的效果.结果表明:支持向量回归和模型树的预测精度都要远远高于逐步回归,在训练样本数量减少时,它们的优势更加明显;支持向量回归在高维空间中有很好的泛化能力,其预测精度随维数的增加呈持续上升的趋势;模型树的预测精度在低维条件下和支持向量回归相仿,但在高维条件下则比支持向量回归差很多,通过逐步回归的特征选择预处理,可以提高模型树的预测精度,缩小其与支持向量回归之间的差距.

详情信息展示

模型树和支持向量回归在高光谱遥感中的应用

王圆圆1,李京1,陈云浩1

(1.北京师范大学,资源学院,北京,100875)

摘要:利用连续植被辐射传输模型(SAIL模型)模拟生成小麦冠层反射率数据,比较了数据挖掘中的新方法模型树、支持向量回归与传统的逐步回归用于高光谱数据定量预测的效果.结果表明:支持向量回归和模型树的预测精度都要远远高于逐步回归,在训练样本数量减少时,它们的优势更加明显;支持向量回归在高维空间中有很好的泛化能力,其预测精度随维数的增加呈持续上升的趋势;模型树的预测精度在低维条件下和支持向量回归相仿,但在高维条件下则比支持向量回归差很多,通过逐步回归的特征选择预处理,可以提高模型树的预测精度,缩小其与支持向量回归之间的差距.

关键词:高光谱; 模型树; 支持向量回归; 逐步回归;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号