简介概要

Fabrication and Microstructure of CaTiO3 Coating by Laser Cladding

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2011年第6期

论文作者:吕晓卫 黄卫东

文章页码:1093 - 1097

摘    要:In order to explore the way to improve the adhesion of the calcium phosphate bioceramic coating to Ti substrate, the CaTiO3 coating was fabricated on Ti substrate by laser cladding (LC) using powders of CaCO3 and CaHPO4, and then the composition and microstructure of the coatings were investigated. During LC, CaCO3 can hardly react with Ti, and the coating fabricated using CaCO3 powder is mainly composed of the process of CaO, the decomposition product of CaCO3. Moreover, the coating has a loosened structure and part of it has peeled off from the substrate. CaHPO4 reacts vigorously with Ti, and the coating fabricated using CaHPO4 mainly consists of CaTiO3 which is one of the reaction products between Ti and CaHPO4. Chemical bonding is formed at the interface between coating and substrate, which may enhance the adhesion of the CaTiO3 coating to Ti substrate. Furthermore, CaTiO3 dendrite and eutectic of CaTiO3 and Ca2P2O7 are found on the surface of the coating, implying that a transition can be formed between CaTiO3 and some calcium phosphate bioceramic. So CaTiO3 coating fabricated using CaHPO4 can be a potential candidate to improve the adhesion between calcium phosphate coating and Ti substrate. However, there are also pores and cracks existing in the coating, which may degrade the mechanical properties of the coating.

详情信息展示

Fabrication and Microstructure of CaTiO3 Coating by Laser Cladding

吕晓卫,黄卫东

State Key Laboratory of Solidification Processing,Northwestern Polytechnical University

摘 要:In order to explore the way to improve the adhesion of the calcium phosphate bioceramic coating to Ti substrate, the CaTiO3 coating was fabricated on Ti substrate by laser cladding (LC) using powders of CaCO3 and CaHPO4, and then the composition and microstructure of the coatings were investigated. During LC, CaCO3 can hardly react with Ti, and the coating fabricated using CaCO3 powder is mainly composed of the process of CaO, the decomposition product of CaCO3. Moreover, the coating has a loosened structure and part of it has peeled off from the substrate. CaHPO4 reacts vigorously with Ti, and the coating fabricated using CaHPO4 mainly consists of CaTiO3 which is one of the reaction products between Ti and CaHPO4. Chemical bonding is formed at the interface between coating and substrate, which may enhance the adhesion of the CaTiO3 coating to Ti substrate. Furthermore, CaTiO3 dendrite and eutectic of CaTiO3 and Ca2P2O7 are found on the surface of the coating, implying that a transition can be formed between CaTiO3 and some calcium phosphate bioceramic. So CaTiO3 coating fabricated using CaHPO4 can be a potential candidate to improve the adhesion between calcium phosphate coating and Ti substrate. However, there are also pores and cracks existing in the coating, which may degrade the mechanical properties of the coating.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号