简介概要

Numerical simulation and experimental verification of a novel double-layered split die for high-pressure apparatus used for synthesizing superhard materials

来源期刊:International Journal of Minerals Metallurgy and Materials2019年第3期

论文作者:Zhuo Yi Wen-zhi Fu Ming-zhe Li Liang Zhao Li-yan Wang

文章页码:377 - 385

摘    要:Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.

详情信息展示

Numerical simulation and experimental verification of a novel double-layered split die for high-pressure apparatus used for synthesizing superhard materials

Zhuo Yi1,2,Wen-zhi Fu1,2,Ming-zhe Li1,2,Liang Zhao1,2,Li-yan Wang1,2

1. Roll Forging Institute, Jilin University2. College of Materials Science and Engineering, Jilin University

摘 要:Based on the principles of massive support and lateral support, a novel double-layered split die(DLSD) for high-pressure apparatus was designed to achieve a higher pressure-bearing capacity and larger sample cavity. The stress distributions of the DLSDs with different numbers of divided blocks were investigated by the finite element method and compared with the stress distributions of the conventional belt-type die(BTD). The results show that the cylinders and first-layer supporting rings of the DLSDs have dramatically smaller stresses than those of the BTD. In addition, increasing the number of divided blocks from 4 to 10 gradually increases the stress of the cylinder but has minimal influence on the stress of the supporting rings. The pressure-bearing capacities of the DLSDs with different numbers of divided blocks, especially with fewer blocks, are all remarkably higher than the pressure-bearing capacity of the BTD. The contrast experiments were also carried out to verify the simulated results. It is concluded that the pressure-bearing capacities of the DLSDs with 4 and 8 divided blocks are 1.58 and 1.45 times greater than that of the BTD. This work is rewarding for the commercial synthesis of high-quality, large-sized superhard materials using a double-layered split high-pressure die.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号