简介概要

基于ACC-ENN算法的煤矿瓦斯涌出量动态预测模型研究

来源期刊:煤炭学报2014年第7期

论文作者:付华 谢森 徐耀松 陈子春

文章页码:1296 - 1301

关键词:绝对瓦斯涌出量;蚁群聚类;Elman神经网络;动态预测;

摘    要:为了对煤矿瓦斯监测数据进行有效分析,以实现准确、可靠的回采工作面绝对瓦斯涌出量预测,提出了蚁群聚类算法优化Elman神经网络的绝对瓦斯涌出量动态预测方法。算法通过对Elman神经网络的权值、阈值寻优,建立了基于ACC-ENN算法的绝对瓦斯涌出量预测模型,并结合矿井监测到的历史数据进行实例分析。试验结果表明:经蚁群聚类优化后的Elman神经网络绝对瓦斯涌出量预测模型较其他预测模型具有更好的泛化能力和更高的预测精度,有效地实现了煤矿绝对瓦斯涌出量动态预测。

详情信息展示

基于ACC-ENN算法的煤矿瓦斯涌出量动态预测模型研究

付华1,谢森1,徐耀松1,陈子春2

1. 辽宁工程技术大学电气与控制工程学院2. 开滦(集团)有限责任公司

摘 要:为了对煤矿瓦斯监测数据进行有效分析,以实现准确、可靠的回采工作面绝对瓦斯涌出量预测,提出了蚁群聚类算法优化Elman神经网络的绝对瓦斯涌出量动态预测方法。算法通过对Elman神经网络的权值、阈值寻优,建立了基于ACC-ENN算法的绝对瓦斯涌出量预测模型,并结合矿井监测到的历史数据进行实例分析。试验结果表明:经蚁群聚类优化后的Elman神经网络绝对瓦斯涌出量预测模型较其他预测模型具有更好的泛化能力和更高的预测精度,有效地实现了煤矿绝对瓦斯涌出量动态预测。

关键词:绝对瓦斯涌出量;蚁群聚类;Elman神经网络;动态预测;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号