关于半平面的周期Riemann-Hilbert边值问题
来源期刊:中南大学学报(自然科学版)1979年第1期
论文作者:蔡海涛
文章页码:105 - 112
关键词:边值问题; 半平面; 间断点; 自守函数; 非齐次问题; 实数部分; 实际意义; 边值条件; 奇异点; 全纯
摘 要:本文直接应用推广的Plemelj公式,研究关于半平面的周期Riemann-Hilbert边值的问题。所得结果较Гахов,Ф.Д.的结果更具有实际意义,因为我们可以假定有关函数具有第一类型间断点。同时指出,本文结果是Галuй.Л.A.的结果在周期情况的推广。
Abstract: In this paper, We have the discussion and solution of the periodic Riemann-Hilbert problem of the half plane We suppose that L is a set of no intersecting periodic aπ interval Lh oflength aπ and Lo:(-aπ/2,aπ/2) Consider the followiog problem. Find a function W (z) = u-iυ of period aπ which is regular in the half plane x<0, such that boundary condition a(x)u+b(x)v=f(x),X∈L Where a(x), b(x), and f(x) are the given functions of period aπ and ∈H, and where √(a2(x)+b2(x))≠0. We get the solutions (1.11), (1.12), (1.15) and (1.17) Letting a→∝, We get from (1.12) and (1,15) respectively the solutions of L. A. Galin (4.16) and (4.23)[2]