简介概要

基于差分改进的仿射传播聚类算法

来源期刊:控制工程2018年第12期

论文作者:赵小强 谢亚萍

文章页码:2115 - 2119

关键词:聚类算法;仿射传播算法;差分进化算法;UCI数据集;偏向参数;

摘    要:由于仿射传播(AP)聚类算法中偏向参数对聚类精度有着直接的影响,但其偏向参数都是经验取值导致不能得到最优的聚类结果,针对这一问题提出了基于差分改进的仿射传播聚类算法(DE-AP),该算法首先进行AP聚类分析,其偏向参数取经验值;然后根据得到的聚类结果判断偏向参数是否最优,如果不是则把偏向参数作为差分改进算法的输入群体;最后使用差分算法的变异、杂交和选择操作对参数进行智能调整,选择适应值最高的个体作为偏向参数,返回再次聚类。采用经典数据集验证,实验结果从类数、正确率和FMI三方面表明DE-AP算法能够有效地解决偏向参数对聚类结果的影响,从而提高聚类精度。

详情信息展示

基于差分改进的仿射传播聚类算法

赵小强1,2,谢亚萍1,2

1. 兰州理工大学电气工程与信息工程学院2. 兰州理工大学甘肃省工业过程先进控制重点实验室

摘 要:由于仿射传播(AP)聚类算法中偏向参数对聚类精度有着直接的影响,但其偏向参数都是经验取值导致不能得到最优的聚类结果,针对这一问题提出了基于差分改进的仿射传播聚类算法(DE-AP),该算法首先进行AP聚类分析,其偏向参数取经验值;然后根据得到的聚类结果判断偏向参数是否最优,如果不是则把偏向参数作为差分改进算法的输入群体;最后使用差分算法的变异、杂交和选择操作对参数进行智能调整,选择适应值最高的个体作为偏向参数,返回再次聚类。采用经典数据集验证,实验结果从类数、正确率和FMI三方面表明DE-AP算法能够有效地解决偏向参数对聚类结果的影响,从而提高聚类精度。

关键词:聚类算法;仿射传播算法;差分进化算法;UCI数据集;偏向参数;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号