简介概要

Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第12期

论文作者:E.I.Galindo-Nava B.I.Y.Basha P.E.J.Rivera-Díaz-del-Castillo

文章页码:1433 - 1447

摘    要:A modelling suite for hydrogen transport during electrochemical permeation, degassing and thermal desorption spectroscopy is presented. The approach is based on Fick’s diffusion laws, where the initial concentration and diffusion coefficients depend on microstructure and charging conditions. The evolution equations are shown to reduce to classical models for hydrogen diffusion and thermal desorption spectroscopy. The number density of trapping sites is found to be proportional to the mean spacing of each microstructural feature, including dislocations, grain boundaries and various precipitates. The model is validated with several steel grades and polycrystalline nickel for a wide range of processing conditions and microstructures. A systematic study of the factors affecting hydrogen mobility in martensitic steels showed that dislocations control the effective diffusion coefficient of hydrogen. However,they also release hydrogen into the lattice more rapidly than other kind of traps. It is suggested that these effects contribute to the increased susceptibility to hydrogen embrittlement in martensitic and other high-strength steels. These results show that the methodology can be employed as a tool for alloy and process design, and that dislocation kinematics play a crucial role in such design.

详情信息展示

Hydrogen transport in metals: Integration of permeation, thermal desorption and degassing

E.I.Galindo-Nava1,B.I.Y.Basha1,P.E.J.Rivera-Díaz-del-Castillo2

1. Department of Materials Science and Metallurgy, University of Cambridge2. Department of Engineering, Lancaster University

摘 要:A modelling suite for hydrogen transport during electrochemical permeation, degassing and thermal desorption spectroscopy is presented. The approach is based on Fick’s diffusion laws, where the initial concentration and diffusion coefficients depend on microstructure and charging conditions. The evolution equations are shown to reduce to classical models for hydrogen diffusion and thermal desorption spectroscopy. The number density of trapping sites is found to be proportional to the mean spacing of each microstructural feature, including dislocations, grain boundaries and various precipitates. The model is validated with several steel grades and polycrystalline nickel for a wide range of processing conditions and microstructures. A systematic study of the factors affecting hydrogen mobility in martensitic steels showed that dislocations control the effective diffusion coefficient of hydrogen. However,they also release hydrogen into the lattice more rapidly than other kind of traps. It is suggested that these effects contribute to the increased susceptibility to hydrogen embrittlement in martensitic and other high-strength steels. These results show that the methodology can be employed as a tool for alloy and process design, and that dislocation kinematics play a crucial role in such design.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号