Effect of cross-wind on spatial vibration responses of train and track system
来源期刊:中南大学学报(英文版)2009年第3期
论文作者:向俊 赫丹 曾庆元
文章页码:520 - 524
Key words:slab track; high-speed train; cross-wind; spatial vibration; displacement; dynamic responses
Abstract: By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the cross-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
基金信息:the Major State Basic Research and Development Program of China
the National Natural Science Foundation of China
the New Century Excellent Talents in University