简介概要

基于代价敏感理论的多决策树煤层底板突水预测模型

来源期刊:工矿自动化2020年第12期

论文作者:李彦民 周晨阳 李凤莲

关键词:煤层底板突水预测;突水影响因素;非平衡数据集;代价敏感理论;多决策树;

摘    要:在进行煤层底板突水预测时,水害状况一般分为安全和突水2种状态,状态数据具有非平衡特点,而已有的煤层底板突水预测模型主要适用于平衡数据,对非平衡数据集预测结果常呈现"一边倒"现象,即安全状况的预测准确率明显高于突水状况的预测准确率,整体预测性能较低。针对该问题,构建了基于代价敏感理论的多决策树煤层底板突水预测模型。该模型中,每个决策树选用不同的突水影响因素作为单决策树的根节点,单决策树节点属性选择准则融合代价敏感理论及Gini指标,从而加重了对突水数据(少数类)误判的惩罚力度,提高了突水状况的预测性能;根据构建的单决策树突水预测模型得到其规则集,将所有单决策树突水预测模型规则集合并,得到多决策树突水预测模型规则集,采用多决策树突水预测模型规则集得到多个突水数据的预测结果,而后采用少数服从多数原则,基于投票法得到最终的预测结果。实验结果表明:该模型随着惩罚因子的增大,真实正类率预测结果呈现先增后减的趋势;与基于分类回归树(CART)算法的单决策树突水预测模型相比较,在数据不平衡率为2、分类错误惩罚因子取4时,该模型真实正类率可达到93.06%,真实负类率可达到97.85%,准确率为96.25%,均优于基于CART算法的突水预测模型性能;在数据不平衡率提高到6、分类错误惩罚因子取20时,2种模型的正类率均达到100%,本文模型的负类率为99.37%,准确率为99.47%,依然优于基于CART算法的突水预测模型性能。实验结果验证了本文模型的有效性。

详情信息展示

基于代价敏感理论的多决策树煤层底板突水预测模型

李彦民1,周晨阳2,李凤莲1

1. 太原理工大学信息与计算机学院2. 太原理工大学大数据学院

摘 要:在进行煤层底板突水预测时,水害状况一般分为安全和突水2种状态,状态数据具有非平衡特点,而已有的煤层底板突水预测模型主要适用于平衡数据,对非平衡数据集预测结果常呈现"一边倒"现象,即安全状况的预测准确率明显高于突水状况的预测准确率,整体预测性能较低。针对该问题,构建了基于代价敏感理论的多决策树煤层底板突水预测模型。该模型中,每个决策树选用不同的突水影响因素作为单决策树的根节点,单决策树节点属性选择准则融合代价敏感理论及Gini指标,从而加重了对突水数据(少数类)误判的惩罚力度,提高了突水状况的预测性能;根据构建的单决策树突水预测模型得到其规则集,将所有单决策树突水预测模型规则集合并,得到多决策树突水预测模型规则集,采用多决策树突水预测模型规则集得到多个突水数据的预测结果,而后采用少数服从多数原则,基于投票法得到最终的预测结果。实验结果表明:该模型随着惩罚因子的增大,真实正类率预测结果呈现先增后减的趋势;与基于分类回归树(CART)算法的单决策树突水预测模型相比较,在数据不平衡率为2、分类错误惩罚因子取4时,该模型真实正类率可达到93.06%,真实负类率可达到97.85%,准确率为96.25%,均优于基于CART算法的突水预测模型性能;在数据不平衡率提高到6、分类错误惩罚因子取20时,2种模型的正类率均达到100%,本文模型的负类率为99.37%,准确率为99.47%,依然优于基于CART算法的突水预测模型性能。实验结果验证了本文模型的有效性。

关键词:煤层底板突水预测;突水影响因素;非平衡数据集;代价敏感理论;多决策树;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号