基于AEPSO优化的神经网络多步预测控制

来源期刊:中南大学学报(自然科学版)2007年第6期

论文作者:侯志祥 吴义虎 袁松贵 申群太

文章页码:1162 - 1168

关键词:预测控制;神经网络;粒子群优化;收敛性

Key words:predictive control; neural network; part swarm optimization; convergence

摘    要:为提高神经网络预测控制的性能,提出了基于自适应扩展粒子群优化的神经网络预测控制方案。基本PSO算法中,每个粒子的更新受粒子个体极值和局部极值的影响,为了提高其全局收敛性,采用多粒子策略,使每个粒子的更新受更多其他粒子的影响;为提高收敛速度,采用自适应策略,对参数c0进行自适应调整,使c0随着迭代次数的增加而逐渐减小,这样,在PSO算法的搜索过程中,随着迭代次数的增加,搜索区域会越来越小,从而加快PSO算法收敛速度。运用该算法实现神经网络预测控制中的滚动优化,在有限时域内对控制序列进行寻列,给出基于粒子群优化的神经网络预测控制系统的稳定性证明。仿真结果表明,基于粒子群优化的神经网络预测控制系统具有良好的跟踪性能。

Abstract: In order to enhance the index of neural network predictive control, a neural network predictive control method was provided by using a self-adaptive expand PSO algorithm. Each particle was refreshed by using individual and local extremum in the basic PSO algorithm. To improve the global convergence, particle was refreshed by multi-particle strategy; at the same time, the parameter c0 was self-adaptively adjusted and in such a way c0 gradually decreased with the increase of iterative time, as the searching area of the PSO algorithm was reduced and the convergence velocity of PSO algorithm was effectively improved. The improved PSO was used as the optimizer of the neural network predictive control and optimized the control serial in the finite time field. The stability of predictive control of neural network using improved PSO as optimizer is proved. Simulation results show that the method has better track performance.

基金信息:国家自然科学基金资助项目
湖南省自然科学基金资助项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号