粉末冶金压制方程的统计分析验证
来源期刊:中南大学学报(自然科学版)1982年第1期
论文作者:黄培云
文章页码:1 - 8
关键词:压制方程; 粉末冶金; 对数方程; 分析验证; 线性相关系数; 统计分析; 直线关系; 计算; 对比验证; 粉末体
摘 要:本文对粉末冶金最常见的压制方程,例如巴尔申方程、康诺匹茨基方程、川北公夫方程等进行了统计分析,并同著者所推导的双对数方程 mlogln[(dm-d0)d/(dm-d)d0]=logP-logM 作对比验证。引用国内外文献中的数据,计算和比较了上述几种压制方程的线性相关系数 R,得知在大多数情况下,根据双对数方程计算的 R 绝对值非常接近于1(通常为0.99—0.999甚至更高),说明双对数方程所预测的直线关系获得很好的验证。
Abstract:
Statistical analysis is made on the most commonly used equations for the compaction of powder in powder metallurgy,such as Balshin′s equation:logP =-L(β-1)+K,Shapiro-Konopicky′s equation:ln[(1-D)/(1-D0)]=-KP, Kawakita′s equation:1/C=(1/abP)+(1/a),etc.The log-ln equation derived by the auther
m log In[(dn-d0)d/(dm-d)d0]=logP-logM
is also given together with the other equations.
Correlation coefficients R[R=m(σx/σy),where m=slope of the linear regression line,σy=standard deviation of the y-array,and σx=standard deviation of the x-array]are calculated and compared.
In most cases,the absolute values of the correlation coefficients calculated for the log-In equation are very close to 1(usually 0.99-0.999 or even better),indicating that a very good straight-line relationship is obtained as predicted by the log-In equation.